Исследование Э. Сатмари и сотрудников дает количественную оценку сложности, которая может быть достигнута в мире РНК, и точности репликации, необходимой для достижения этого уровня сложности (Kun et al., 2005). Оценка, основанная на функциональной устойчивости к мутациям хорошо известных рибозимов, показывает, что при частоте ошибок 10–3 на нуклеотид за цикл репликазы (это примерно соответствует точности РНК-зависимой РНК-полимеразы современных вирусов) РНК-«организм», состоящий из примерно сотни «генов» размером с тРНК (80 нуклеотидов), будет устойчивым. Такой уровень точности всего лишь на порядок выше, чем у самых точных рибозимов-полимераз, полученных отбором in vitro. Данную величину можно положить приближенной верхней границей сложности ансамблей совместно развивающихся «эгоистичных кооператоров», которые могли представлять собой «организмы» мира РНК.
Даже в лучшем случае мир РНК вряд ли обладал потенциалом эволюции дальше чрезвычайно простых «организмов». Для достижения большей сложности потребовались изобретение трансляции и «белковый прорыв» (перенос основной каталитической активности на белки). Однако силы отбора, лежащие в основе возникновения системы трансляции в мире РНК, остаются неясными, и реконструкция пути к трансляции крайне сложна. Это отсутствие ясности в отношении непрерывности эволюции от мира РНК к РНК-белковому миру является второй по значимости проблемой гипотезы мира РНК, возможно даже более существенной, чем ограниченный каталитический арсенал и (как правило) низкая эффективность рибозимов. Далее мы обсудим возможные пути выхода из этой ситуации.
Природа и происхождение генетического кода
Природа и происхождение значения кодонов универсального генетического кода имеют решающее значение для понимания того, как могла возникнуть трансляция. Эволюция кода остро интересовала исследователей еще до того, как код был полностью расшифрован, и уже самые ранние работы по этой теме отчетливо различали три (возможно, и не взаимоисключающие) эволюционных модели: (1) стерическая комплементарность, обеспечивающая специфическое взаимодействие между аминокислотами и соответствующими им кодонными или антикодонными триплетами нуклеотидов, (2) «застывшая случайность», то есть закрепление случайного кода, который стало практически невозможно существенно изменить позже, и (3) адаптивная эволюция кода, начавшаяся с первоначально случайного соответствия кодонов аминокислотам (Crick, 1968).
Структура кода явственно неслучайна: кодоны родственных аминокислот в основном смежны в кодовой таблице, что обусловливает высокую (хотя и не наивысшую возможную) устойчивость кода к мутациям и ошибкам трансляции, как впервые отметил Вёзе (Woese, 1967), а С. Фриленд и Л. Херст впоследствии показали количественно (Freeland and Hurst, 1998). Высокая надежность кода опровергает сценарий «застывшей случайности» в его крайней форме (случайная привязка кодонов к аминокислотам без последующей эволюции), однако и стереохимическая модель, и модель отбора, и их сочетание, и «застывшая случайность» с последующей адаптацией способны в принципе объяснить наблюдаемые свойства кода (Koonin and Novozhilov, 2009).
Положение осложняется тем, что неизвестно, существует ли стереохимическое соответствие между аминокислотами и соответствующими триплетами нуклеотидов (кодонами). Ответ на этот кажущийся простым вопрос оказывается на удивление трудноуловимым. Ранние попытки обнаружить избирательность взаимодействия (поли)аминокислот и полинуклеотидов были безрезультатны, что говорит о том, что если специфическое сродство и существует, то отнюдь не строгое, и взаимодействие, вероятно, слабо и зависимо от внешних факторов. Хотя и имеются некоторые сообщения о неслучайных взаимодействиях аминокислот с олигонуклеотидами, но в целом попытки продемонстрировать такое взаимодействие напрямую оказались неудачными (Saxinger and Ponnamperuma, 1974).
Интерес к стереохимической гипотезе возродился с появлением метода усиления отбора (SELEX) для выделения олигонуклеотидов (аптамеров), избирательно связывающихся с аминокислотами (Yarus et al., 2005, 2009). Для восьми аминокислот с большими боковыми цепями были выделены аптамеры, значительно обогащенные триплетами нуклеотидов, идентичными либо кодонам, либо антикодонам соответствующей аминокислоты. Результаты этих экспериментов, правда, несколько неубедительны, так как для одних аминокислот аптамеры содержат в основном кодоны, тогда как для других — в основном антикодоны. Рассматриваемые в совокупности, данные по сродству аптамеров к аминокислотам считаются серьезным аргументом в поддержку стереохимической гипотезы происхождения кода, однако реальная надежность и значимость этих результатов остаются под большим вопросом.
Наличие как кодонов, так и антикодонов в аптамерах для нескольких аминокислот затруднительно интерпретировать в терминах стереохимической комплементарности. Кроме того, аминокислоты, для аптамеров которых получены подробные данные, имеют сложные боковые цепи (которые, предположительно, необходимы для избирательного взаимодействия с аптамерами) и, вероятно, являются поздними добавлениями к генетическому коду (Trifonov, 2004). До тех пор, пока не будут получены аналогичные результаты для простых, предположительно древних аминокислот, эксперименты по отбору аптамеров затруднительно рассматривать как убедительный аргумент в пользу стереохимической гипотезы происхождения кода.
Итак, ключевой вопрос о том, играло ли роль в происхождении кода прямое взаимодействие между аминокислотами и специфическими нуклеотидными триплетами, все еще ждет ответа. В следующем разделе, при обсуждении происхождения трансляции, мы будем максимально объективны, рассматривая происхождение кода либо через избирательное взаимодействие между аминокислотами и соответствующими нуклеотидными триплетами, либо через случайное соответствие между аминокислотами и кодонами, то есть из «застывшей случайности».
Происхождение трансляции: ключевые идеи и модели
[129]
За 40 лет, прошедших со времени открытия механизма трансляции и расшифровки генетического кода, были предложены многочисленные — неизбежно спекулятивные, иногда надуманные и часто весьма остроумные теоретические модели происхождения и эволюции различных компонентов трансляционной системы и разных аспектов процесса трансляции. Представить здесь тщательный критический анализ этих моделей нереально. Вместо этого мы рассмотрим несколько центральных идей, имеющих прямое отношение к происхождению трансляции, а затем обсудим несколько более подробно единственные два известных мне убедительных сценария.
Главное общее положение эволюции трансляции состоит в том, что отбор на синтез белков не мог быть основной движущей силой эволюции трансляционной системы. Чтобы эта сложная система эволюционировала дарвиновским путем, необходимы многочисленные шаги, а белки появляются лишь на последних из них; до этого момента организм «не знает», какие эволюционные преимущества может нести с собой использование белков. Как отмечалось в главе 9, существует много ситуаций, в которых эволюция как будто обладает возможностью некоего предвидения; эти случаи, однако, основаны фактически на экстраполяции, тогда как в случае трансляции нет еще ничего, из чего можно были бы экстраполировать.