Книга Логика случая. О природе и происхождении биологической эволюции, страница 34. Автор книги Евгений Кунин

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Логика случая. О природе и происхождении биологической эволюции»

Cтраница 34

В главе 3 мы уже обсуждали важные аспекты структуры генетической вселенной прокариот. Она рассматривалась в основном как сложный статичный объект, то есть в терминах распределения различных существенных переменных. В этой главе мы также рассматриваем распределения, но в основном пытаемся встать на динамическую точку зрения и исследовать мир прокариот в терминах потоков генов и взаимодействия между репликонами.

Размер и общая организация бактериальных и архейных геномов

Несмотря на огромные различия в образе жизни, а также метаболической и геномной организации, бактериальные и архейные геномы демонстрируют легко различимые общие архитектурные принципы (см. обзор в гл. 3). Секвенированные бактериальные и архейные геномы охватывают два порядка величины по размерам от около 144 Кб для внутриклеточного симбионта Hodgkinia cicadicola до примерно 13 Мб для обитающей в почве бактерии Sorangium cellulosum (Koonin and Wolf, 2008b). Примечательно, что бактерии демонстрируют бимодальное распределение размеров генома [49] с пиком в районе примерно 5 Мб и дополнительным плато в районе примерно 2 Мб (см. рис. 5-1). Хотя существует много геномов промежуточного размера, это распределение предполагает существование двух в достаточной степени разделенных классов бактерий с «малым» и «большим» геномами. К этим наблюдениям нужно относиться с известной осторожностью, так как они могут быть артефактом, обусловленным предпочтительным секвенированием небольших геномов (в первую очередь бактериальных патогенов), но с ростом числа секвенированных геномов такое объяснение становится все менее удовлетворительным.

Археи демонстрируют более узкое, но также сложное распределение размеров генома от примерно 0,5 Мб у паразита/симбионта Nanoarchaeum equitans до примерно 5,5 Мб у Methanosarcina barkeri, с острым пиком в районе 2 Мб, который практически точно соответствует расположению плато бактериальных геномов малого размера, вторым небольшим пиком около 3 Мб и тяжелым хвостом, соответствующим геномам большего размера (см. рис. 5-1). При этом смещения в базе данных опять могут быть существенными, так как в настоящее время геномов архей секвенировано примерно на порядок меньше, чем геномов бактерий, так что пока может быть еще просто недостаточно данных для выявления истинной формы распределения размеров геномов. Однако более вероятно, что археи действительно являются менее разнородной группой, как будет обсуждаться далее в данном разделе.

Все очень маленькие (менее 1 Мб) геномы бактерий и архей принадлежат бактериям-паразитам и внутриклеточным симбионтам эукариот и единственной известной архее-паразиту (или симбионту) Nanoarchaeum equitans, которая живет за счет другой археи, Ignicoccus hospitalis. Таким образом, кажется все более вероятным, что минимальный размер генома свободно живущего прокариота, по крайней мере автотрофа, который не зависит от других форм жизни для добывания пищи, немного превышает 1 Мб. Текущий рекорд редукции генома среди свободно живущих клеток, около 1,3 Мб, принадлежит фотосинтезирующей морской альфа-протеобактерии Pelagibacter ubique (SAR11), которая также является наиболее распространенной из известных клеточных форм жизни на Земле (Giovannoni et al., 2005). (Связь между размером популяции и размером генома потенциально важна, мы вернемся к этому вопросу в гл. 8.)

Логика случая. О природе и происхождении биологической эволюции

Рис. 5-1. Распределение размеров геномов среди бактерий и архей.

Как мы уже обсуждали в главе 3, бактериальные и архейные геномы характеризуются высокой плотностью белок-кодирующих генов, которые занимают большую часть ДНК. Бактериальные и архейные геномы демонстрируют одномодальное и довольно острое распределение плотности генов, большей частью 0,8–1,2 гена на Кб геномной ДНК (отсюда предельно простое эмпирическое правило: 1 ген на 1000 пар нуклеотидов). Архейное распределение по сравнению с бактериальным сдвинуто в сторону более высоких плотностей, таким образом, в среднем архейные геномы даже более компактны, чем бактериальные. Похоже, что как кодирующие, так и межгенные области у архей немного короче по сравнению с бактериями.

Таким образом, археи и бактерии весьма похожи в смысле характерных размеров и общей архитектуры геномов, но резко отличаются от эукариот, которые охватывают много больший интервал размеров генома, имеют белок-кодирующие гены, часто прерываемые интронами, и более длинные межгенные промежутки (см. гл. 8). Эти общие признаки бактерий и архей подтверждают концепцию «прокариотного принципа организации генома» (см. более подробно ниже).

Пространство-время прокариот и его эволюция

Фрактальное пространство-время генома, пангеномы и кластеризация прокариот

В главе 3 мы сосредоточились на трехкомпонентной структуре прокариотического геномного пространства, состоящего из ядра, оболочки и облака, и показали, что эта структура фрактальна. Одни и те же три компонента, а именно небольшое ядро, оболочка большего размера и огромное по сравнению с ними «облако», проявляются на любом уровне разбиения генного пространства, от мира прокариот в целом до совсем небольших групп бактерий (см. рис. 3-14). Непосредственным следствием этой фрактальности является важность «пангеномов» — всей общности генов, представляющих геномы, принадлежащие к кластеру архей или бактерий на данном уровне. Читатель может (и должен) немедленно спросить, что определяет кластеры и откуда берутся уровни. Пока предположим, что дерево рРНК Карла Вёзе (см. рис. 2-3) разумно описывает организацию пространства-времени мира прокариот и является по крайней мере одним из источников для кластеризации. В главе 6 мы обсудим применимость и смысл концепции древа жизни более глубоко и покажем, что дерево рРНК, хотя ни в коем случае и не является полным представлением истории эволюции прокариот, тем не менее вполне осмысленно.

Огромное множество архейных и бактериальных генов кодируют белки, которые не имеют никакого измеримого сходства с какими-либо другими доступными последовательностями белков. Эти гены часто обозначают как одинокие рамки считывания (ОРС) [50] (Daubin and Ochman, 2004). Обычно в архейных и бактериальных геномах ОРС составляют 10–15 процентов от всех предсказанных генов. Многие ОРС — очень короткие, и некоторые из них могут быть не реальными генами, а результатом ошибочного предсказания при анализе генома (Ochman, 2002). Кроме того, высказывается предположение, что большинство ОРС, являющихся полноценными генами, произошли от генов бактериофагов и, соответственно, характеризуются высокой горизонтальной мобильностью, хотя в некоторых случаях они могут быть задействованы для клеточных функций и, соответственно, фиксируются в бактериальных и архейных геномах. Последние оценки, следующие из метагеномных исследований бактериофагов, предполагают, что разнообразие фаговых последовательностей очень велико и остается по большей части неизученным (Edwards and Rohwer, 2005). Таким образом, кажется привлекательной идея, что бо́льшая часть бактериальных и архейных ОРС произошла из этого огромного резервуара генов. В трехкомпонентной структуре вселенной прокариотических генов, с которой мы теперь знакомы, ОРС естественным образом объединяются с «облаком» редких генов, которые количественно доминируют в генном пространстве, но не в индивидуальных геномах, как обсуждалось в главе 3.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация