Книга Происхождение жизни. От туманности до клетки, страница 9. Автор книги Михаил Никитин

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Происхождение жизни. От туманности до клетки»

Cтраница 9

Дальше авторы расширили свою модель и вычислили происхождение колец Сатурна (Canup, 2010). Большинство спутников планет-гигантов имеют смешанный силикатно-ледяной состав, и в них содержится до 30–50 % скальных пород. Однако кольца Сатурна практически чисто ледяные, и несколько его ближайших спутников (Тефия, Энцелад, Мимас и все мелкие внутренние спутники) – тоже. Мы помним, что у Титана были «братья» – два-три спутника сравнимого размера, которые начали расти одновременно с ним, но ближе к Сатурну, и были им со временем поглощены. Когда они приближались к Сатурну и переходили предел Роша, эти спутники начинали разрушаться. Сначала от них отрывались менее плотные внешние слои – ледяная кора и подледный океан. Более плотное скальное ядро держалось дольше и падало в Сатурн целиком, а вокруг планеты оставалось ледяное кольцо. Поэтому практически оно и состоит из чистого льда.

Пока газ из околосолнечного диска поступал, его падение в Сатурн быстро утаскивало туда же образующиеся кольца. Но когда приток газа прекратился и угроза падения в Сатурн миновала, кольцо от последнего распавшегося спутника осталось на орбите на миллиарды лет. Его масса была в 100–300 раз больше современной. Взаимодействие частиц кольца между собой приводила к размыванию границ кольца: часть обломков приближалась к Сатурну и в итоге падала в него, а другие отдалялись и выходили за предел Роша. Там они собирались в новые спутники, состоящие почти из чистого льда. Далее приливное взаимодействие с Сатурном поднимало их орбиты, и они освобождали место у внешнего края кольца для появления следующих спутников. По мере рассеивания кольца каждый новый спутник получался меньше предыдущего. Поэтому сначала кольцо породило 1000-километровую Тефию, потом Энцелад и Мимас с диаметрами 500 и 400 км, а затем еще более мелкие спутники. Мельчайшие из этих спутников, 20-километровый Пан и 7-километровый Дафнис, могут быть совсем молодыми – их возраст может составлять менее 10 млн лет.

Нерешенные вопросы в моделях происхождении планет

Хотя многие особенности строения Солнечной системы хорошо описываются моделями происхождения, которые были кратко рассмотрены выше, есть и несколько серьезных нерешенных вопросов. Вот основные из них:

• при образовании планет земной группы из зародышей орбиты планет в моделях получаются более вытянутыми и наклонными, чем в реальности;

• Марс в моделях оказывается крупнее, чем в реальности, часто – самой крупной планетой земной группы;

• осевое вращение планет земной группы определяется случайными событиями столкновения планетных зародышей, и в моделях оси вращения планет ориентированы случайно. В реальности оси вращения Меркурия и Венеры практически перпендикулярны к плоскости орбиты, а Земли и Марса – отклоняются от перпендикуляра не более чем на 30 градусов. Кроме того, реальное осевое вращение Меркурия и Венеры необъяснимо медленное;

• при образовании планет-гигантов начало поглощения газа (который, как мы помним, вращается со скоростью меньше орбитальной) должно приводить к быстрому (в течение тысяч лет) приближению планеты к Солнцу, которое может остановиться только в свободной от газа ближней окрестности Солнца, т. е. внутри орбиты Меркурия;

• в районе орбиты Нептуна не должно было быть достаточно материала для формирования планеты такой массы.

Первое затруднение связано с ограничениями численного моделирования. Чтобы вычисления заняли разумное время, приходится уменьшать число моделируемых объектов, при этом из рассмотрения выпадают мелкие планетезимали и обломки, образующиеся при столкновении планетных зародышей. Масса этих мелких тел хотя и меньше, чем масса моделируемых планетных зародышей, но сравнима (различие, по разным оценкам, составляет от двух до пяти раз). Взаимодействие растущих планет с мелкими телами в среднем приводит к скруглению и уменьшению наклонения орбит планет, а мелкие тела при этом выбрасываются в пояс астероидов.

Причины различия массы Марса между моделями и реальностью пока непонятны. Историю осевого вращения планет мы вскоре рассмотрим. А два последних расхождения между моделями формирования планет и реальностью получили блестящее объяснение в рамках так называемой модели из Ниццы, названной по месту работы ее авторов, опубликованной в трех статьях в журнале Nature (Gomes et al., 2005; Tsiganis et al., 2005; Morbidelli et al., 2005). Эта модель объясняет и другие особенности Солнечной системы – количество и параметры орбит нерегулярных спутников планет-гигантов, орбиты объектов пояса Койпера, комет, астероидов-троянцев, а также «позднюю тяжелую бомбардировку» через резонансные взаимодействия Юпитера и Сатурна в первый миллиард лет существования Солнечной системы.

Осевое вращение планет земной группы и особенности Венеры и Меркурия

Вращение планет-гигантов имеет однозначное происхождение: оно определяется в основном вращением падавшего в них газа в период лавинообразного накопления, которое, в свою очередь, связано с исходным вращением протопланетного диска. Поэтому Юпитер и Сатурн вращаются в одну сторону с периодом около 10 часов. Периоды вращения большинства крупных астероидов тоже близки к этому значению, и происхождение этого вращения аналогичное – из газового вихря, в центре которого росла планетезималь (Pravec, Harris и Michalowski, 2002). Плохо понятно происхождение вращения Урана и Нептуна – их периоды практически равны и составляют около 16 часов, но ось вращения Урана лежит почти в плоскости его орбиты. Вращение планет земной группы при их образовании из планетезималей и планетных зародышей должно было сильно и непредсказуемо измениться при косых столкновениях планетных зародышей. Наклоны осей вращения планет в итоге должны были стать случайными, периоды вращения – тоже, в пределах от нескольких часов до нескольких суток, со средним значением примерно тех же 10 часов. Однако из четырех планет земной группы две (Земля и Марс) имеют наклоны в пределах 30 градусов и периоды вращения около 23–25 часов, а Венера и Меркурий – малые наклоны и огромные периоды вращения 243 и 59 суток. Хуже того, Венера вращается в обратную сторону. Теоретически Венера могла получить обратное вращение за счет удачных направлений скользящих ударов в процессе образования, но ось вращения тогда была бы направлена куда попало.

В случае Земли на основе закона сохранения момента импульса можно рассчитать, что сразу после образования Луны на орбите высотой 25 000–30 000 км период вращения Земли должен был быть около шести часов. Это лучше согласуется со «средним по системе» 10-часовым периодом вращения. У Марса подобных тормозящих спутников нет, Фобос немного ускоряет осевое вращение Марса, но его влияние пренебрежимо мало. С Венерой и Меркурием же ситуация совершенно непонятная.

Возможно, их медленное вращение – это результат приливного торможения? Но обе планеты не имеют спутников, а приливное торможение Солнца вроде бы недостаточно сильно. Есть, однако, старая, еще XIX века, гипотеза, что Меркурий когда-то в древности был спутником Венеры. Так как его масса в пять раз больше массы Луны, то и приливные эффекты должны быть мощнее. Численное моделирование системы Венера – Меркурий (Van Flandern, Harrington, 1976) показывает, что при сравнимом с Землей приливном торможении Венеры Меркурий должен был за 0,5–1,5 млрд лет отдалиться от Венеры на расстояние около 450 000 км и перейти на эллиптическую орбиту вокруг Солнца. При этом период осевого вращения Меркурия к моменту расставания с Венерой должен был составлять около 40 суток, период вращения Венеры – меньше, порядка 20 суток. Опасных сближений Меркурия с Венерой в дальнейшем не происходит. Последующее замедление вращения Меркурия и скругление орбиты объясняется приливным взаимодействием с Солнцем, однако эксцентриситет (мера вытянутости) его орбиты остается самой большой из всех планет.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация