Книга Вселенная внутри нас. Что общего у камней, планет и людей, страница 9. Автор книги Нил Шубин

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Вселенная внутри нас. Что общего у камней, планет и людей»

Cтраница 9

Инфракрасный сигнал, идущий от далеких объектов, нередко очень слаб, поэтому для его регистрации требуется ликвидировать все источники помех, включая те, что создаются в результате вибрации атомов. Чтобы остановить движение атомов, детекторные устройства телескопа охлаждали жидким гелием до –270 °C. Запаса жидкого гелия на спутнике хватало только на один год, поэтому проект представлял собой своеобразные гонки со временем. Работа была сделана, и ненужный больше спутник просто остался на орбите. Годы спустя группа ученых предложила вновь зарядить спутник гелием, чтобы привести сенсорные устройства в рабочее состояние. Однако из-за недостатка средств и разработки новых технологий спутник так и остался выключенным.

Несмотря на краткосрочность службы детекторов спутника, проект оказался весьма успешным: менее чем за год были составлены карты 96 % неба. Спутник заносил на карту новые астероиды и кометы и вдруг, в начале 1984 года, он зафиксировал вспышку на одной из звезд, сопровождавшуюся таким невероятно мощным выделением тепла, которое никак не соответствовало размеру и типу звезды. Это было неожиданно. Ученые имеют представление о том, сколько тепла выделяют разные звезды, и с этой звездой явно было что-то не так. Источник дополнительного излучения был идентифицирован при детальном изучении фотографий. Звезда была окружена большим облаком пыли, удерживавшим тепло. Эта система, Бета Живописца, стала первым примером солнечной системы, застигнутой в период зарождения. Интуитивное предсказание, облаченное в математические формулы, через двести лет нашло наглядное подтверждение.

Вскоре после своего появления наша Солнечная система напоминала Бету Живописца. В системе царил хаос: вращавшиеся вокруг Солнца фрагменты разного размера сталкивались между собой. Притяжение Солнца способствовало тому, что более тяжелые объекты обосновались на более близких к нему орбитах, более легкие частицы и газ кружились в отдалении. В определенной степени это положение вещей сохраняется до сих пор: Солнечная система состоит из более плотных внутренних планет (Меркурий, Венера, Земля и Марс) и газообразных внешних (Юпитер, Сатурн, Уран и Нептун).

Вселенная внутри нас. Что общего у камней, планет и людей

Бета Живописца. Одно из первых изображений рождающейся солнечной системы.


Что бы мы ни искали — пасхальные яйца, окаменелые кости или новый тип солнечной системы, — часто за одним открытием следуют другие. То, что раньше казалось редкостью, теперь обнаруживается повсеместно, часто прямо у нас перед глазами. За годы, прошедшие после обнаружения пыли в системе Бета Живописца, были запущены новые спутники, построены еще более сильные телескопы и разработаны более мощные компьютеры для обработки поступающей из космоса информации. Эти технические достижения изменили наше представление о мироздании. Солнечная система — далеко не единственная во Вселенной, а лишь одна из многих в нашей галактике. В небе множество других звезд, находящихся на разных стадиях развития и окруженных самыми разнообразными планетами.

Мощные технологии и великие идеи трансформировали наше представление о небесах. Однако определенную роль в этом сыграл случай. В предрассветные часы 8 февраля 1969 года гигантский огненный шар разбудил жителей мексиканского штата Чиуауа. Это был большой метеорит, развалившийся на куски в атмосфере Земли. На место происшествия прибыло множество ученых и коллекционеров. Учитывая масштаб взрыва, коллекционеры рассчитывали на богатый урожай, но они не могли себе даже представить ценности упавшего объекта, пока не пригляделись к нему. Серое тело камня было испещрено мельчайшими белыми точками. Метеориты с такими крапинками были известны и раньше, хотя встречались чрезвычайно редко. Лабораторные исследования нескольких ранее обнаруженных метеоритов с подобными крапинками позволили определить химический состав первичных камней, составлявших Солнечную систему.

Метеорит развалился. Его фрагменты разлетелись по пустыне на расстояние до сорока километров. В последующие годы было собрано от двадцати до тридцати тонн обломков. Даже сегодня, спустя почти сорок пять лет, иногда находят кусочки метеорита.

Метеорит выбрал удачное время для падения. В 1969 году активно разрабатывался космический проект «Аполлон». Полет «Аполлона-8», облетевшего Луну, состоялся за два месяца до падения метеорита. Уже планировался старт следующего «Аполлона», и лаборатории по всей Америке собирались заняться анализом лунных камней. Теперь, без дополнительных трат для налогоплательщиков, небесные камни шли буквально в руки. Мексиканский метеорит был настолько огромным, что его хватило множеству лабораторий.

Ученые провели стандартный анализ химического состава метеорита. Некоторые минералы были точно такими же, как на Земле, и это говорит об общности истории многих тел в Солнечной системе, как предсказывали Сведенборг, Кант и Лаплас. Возраст минералов можно определять как по часам, ориентируясь на скорость распада атомов. Когда зарождается минерал, его атомы образуют кристаллическую решетку. Однако некоторые атомы, такие как уран или свинец, изменяются с постоянной скоростью согласно физическим и химическим законам. Если известно относительное содержание различных форм атомов в минерале и скорость их превращений, можно рассчитать время формирования минерала (подробнее об этом говорится в разделе «Примечания и дополнительная литература»). Уран-238 очень медленно превращается в свинец-206. Половина исходного вещества претерпевает это превращение лишь за 4,47 миллиарда лет. Благодаря низкой скорости атомных превращений уран и свинец являются идеальными атомами для анализа возраста очень древних минералов. Концентрация урана и свинца в мексиканском метеорите позволила определить время образования Солнечной системы: это случилось 4,67 миллиарда лет назад.

Что происходило тогда на Земле? Непосредственные свидетельства вряд ли удастся обнаружить: для это требуется найти камни, образовавшиеся в процессе охлаждения земной коры и оставшиеся за миллиарды лет в неизменными. Проще всего изучать геологические процессы в местах, где горные породы наслоились друг на друга, как в торте. Наибольший интерес представляют нижние, самые древние, слои. Но чтобы добраться до них, нужно пробурить очень глубокую скважину, а это слишком дорого для обычного геологического исследования. Кроме того, бурение — в определенном смысле выстрел наугад, поскольку невозможно точно сказать, на какой глубине следует проводить анализ. Более простой способ заключается в поиске мест, где древние породы выступают на поверхность. Но проблема в том, что земная кора находится в постоянном движении. В таких динамических условиях слои уходят вглубь, нагреваются и размываются под действием воды и ветра. В идеальных геологических условиях пласты пород сохранялись бы, как слои торта, но в реальности земная кора напоминает торт, который разделили на части, раздавили, а потом сильно нагрели. Теперь представьте себе, что 99,99999 % этого торта выбросили. Так вот, ваше ощущение от поедания оставшегося можно сравнить с тем, что чувствуют геологи, пытающиеся разыскать свидетельства, относящиеся к временам, когда образовалась наша планета.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация