Наши органы обоняния содержат немало сведений, отражающих наши связи с далекими предками — рыбами, амфибиями, млекопитающими. Большой прорыв в изучении этих связей произошел в 1991 году, когда Линда Бак и Ричард Аксель открыли большое семейство генов, отвечающих за наше обоняние.
Носовые отверстия и движение молекул пахучих веществ в обонятельных органах позвоночных от бесчелюстного (миноги) до человека.
Планируя свои эксперименты, Бак и Аксель исходили из трех важных предположений. Во-первых, у них была правдоподобная гипотеза, основанная на результатах, полученных в других лабораториях, о том, как должны выглядеть гены, на которых записан рецепт обонятельных рецепторов. Эксперименты показали, что структура этих рецепторов включает характерные молекулярные петли, помогающие рецепторам передавать информацию в пределах нервной клетки. Это была важная подсказка, потому что благодаря ей Бак и Аксель могли теперь искать в мышином геноме все гены, которые позволяют синтезировать такие структуры. Во-вторых, они предположили, что характер действия этих генов должен быть специфическим — они должны работать только в тканях, участвующих в восприятии запахов. Вполне логично: если эти гены отвечают за синтез обонятельных рецепторов, они не должны работать в тканях, где таких рецепторов нет. В-третьих, и это предположение было довольно смелым, Бак и Аксель решили, что должен быть не один такой ген и даже не несколько, что таких генов должно быть очень много. Эта гипотеза была выдвинута из тех соображений, что разные запахи стимулируются множеством разных веществ, и если каждому типу вещества соответствует один тип рецепторов, за который отвечает один ген, то таких генов должно быть очень и очень много. Однако исходя из данных, которые имелись в распоряжении исследователей на тот момент, эта гипотеза вполне могла оказаться ошибочной.
Но все три предположения вполне подтвердились. Бак и Аксель смогли найти искомые гены, обладающие характерной структурой. Они установили, что все эти гены работали только в тканях, задействованных в обонянии, а именно в обонятельном эпителии носовой полости. И наконец, они нашли огромное число таких генов. Это был полный успех. Затем Бак и Аксель открыли нечто поистине поразительное: целых три процента нашего генома занимают гены, отвечающие за восприятие разных запахов. Каждый из этих генов позволяет синтезировать рецептор, чувствительный к веществам определенного типа. За эти исследования Линда Бак и Ричард Аксель в 2004 году получили Нобелевскую премию по физиологии и медицине.
Успех экспериментов Бак и Акселя вдохновил многих других ученых на поиски генов обонятельных рецепторов у разных видов животных. Оказалось, что такие гены представляют собой настоящую летопись, в которой отражены все основные переходные этапы в истории жизни. Возьмем, к примеру, выход позвоночных из воды на сушу более 365 миллионов лет назад. Как выяснилось, существует два типа генов, ответственных за обоняние: одни специализируются на улавливании пахучих веществ, растворенных в воде, а другие — взвешенных в воздухе. Растворенные в воде молекулы иначе реагируют с обонятельными рецепторами, чем молекулы, летающие по воздуху, поэтому и рецепторы для них нужны разные. Как и следовало ожидать, оказалось, что у рыб на мембранах носовых нейронов сидят рецепторы для воды, а у рептилий и млекопитающих — для воздуха.
Это открытие помогает нам разобраться в устройстве обоняния самых примитивных из живущих в наши дни позвоночных — бесчелюстных, таких как миноги и миксины. Оказывается, у этих существ, в отличие от более продвинутых рыб и млекопитающих, нет генов ни «водных», ни «воздушных» рецепторов. Их обонятельные рецепторы представляют собой нечто среднее. Вывод ясен: эти примитивные позвоночные возникли раньше, чем гены обоняния разделились на два типа.
Изучение бесчелюстных позволяет сделать и еще одно очень важное наблюдение: генов обоняния у них очень мало. У рыб таких генов больше, а у амфибий и рептилий — еще больше. Число генов обоняния постепенно возрастало в ряду предков млекопитающих и только у них стало по-настоящему огромным. У нас, млекопитающих, таких генов больше тысячи, и значительная часть нашего генетического аппарата посвящена одному лишь обонянию. В целом, по-видимому, чем больше таких генов имеется у животного, тем острее его обоняние и тем выше способность различать запахи. Поэтому вполне закономерно, что у нас этих генов так много: млекопитающие особо специализированы на использовании обоняния. Вспомним, как хорошо идут по следу собаки, безошибочно держа курс на едва уловимый запах.
Но откуда возникли все эти многочисленные новые гены? Не могли же они появиться на пустом месте! Если мы посмотрим на строение этих генов, ответ на это вопрос станет для нас вполне очевидным. Если сравнить гены обоняния млекопитающего с горсткой генов обоняния миноги, мы увидим, что «избыточные» гены млекопитающего все представляют собой как бы вариации на тему: они выглядят как копии, хотя и видоизмененные, генов миноги. Это означает, что огромное число наших генов обоняния возникло в результате многократного удвоения генов, которые были у наших далеких предков — примитивных бесчелюстных позвоночных.
Но из всего, что известно о генах обоняния млекопитающих, следует один парадоксальный вывод. У людей, как и у всех остальных млекопитающих, эти гены занимают около трех процентов генома. Когда генетики рассмотрели структуру этих генов в подробностях, оказалось, что их ждал большой сюрприз: из тысячи имеющихся у нас генов обоняния целых триста стали совершенно нефункциональными в результате мутаций, изменивших их структуру до полной непригодности. У многих других млекопитающих эти гены используются. Почему у нас так много генов обоняния, если среди них так много бесполезных?
Ответить на этот вопрос помогают исследования дельфинов и китов. Хотя они и похожи внешне на рыб, они настоящие млекопитающие, у них есть молочные железы и три косточки в среднем ухе. История их происхождения тоже записана у них в обонятельных генах: в отличие от рыб, они не имеют генов водных рецепторов, а имеют, как и все млекопитающие, гены воздушных рецепторов. В той ДНК, что отвечает за формирование органов обоняния у китов и дельфинов, записана информация об их происхождении от наземных млекопитающих. Но вот что интересно: дельфины и киты больше не используют свои носовые полости для восприятия запахов. Что же делают у них эти гены? Бывшие ноздри образовали у китов и дельфинов дыхало, которое они используют для дыхания, но не для обоняния. Примечательно то, что при этом произошло с генами обоняния: у китообразных все гены обоняния на месте, но все они нефункциональны.
То же, что случилось с генами обоняния дельфинов и китов, произошло также и со многими генами многих других видов.
Время от времени, из поколения в поколение, в геноме возникают мутации. Если в результате мутации ген теряет функциональность, это нередко приводит к смерти организма. Но что будет, если в результате мутации отключается ген, который ни для чего не нужен? Последствия таких событий описаны множеством математических моделей, но в общих чертах их и так нетрудно предсказать: подобные мутации будут спокойно передаваться из поколения в поколение. По-видимому, именно это и случилось с дельфинами. Гены обоняния им больше не нужны: воспринимать запахи из воздуха им незачем, дыхало служит им только для дыхания. Поэтому мутации, отключавшие эти гены, из поколения в поколение постепенно накапливались. Эти гены стали бесполезны, но остались в ДНК как безмолвные свидетельства эволюции.