Свидетельства подобной передачи генов можно обнаружить даже на самых древних ветвях жизненного древа. Archeoglobus fulgidus — архея, обитающая на морском дне в тех местах, где есть выходы нефти. Она обладает всеми необходимыми признаками археи — особенно характерны молекулы, из которых она строит клеточную стенку, а также способ копирования информации с генов и строительства белков. Но вот питается она нефтью, причем пользуется для разложения нефти ферментами, которые можно обнаружить только у бактерий, у других архей они не встречаются. Наши собственные гены тоже имеют смешанное происхождение. Так, гены, отвечающие за обработку информации — в частности, за копирование ДНК, — находятся в близком родстве с генами архей. А многие гены, имеющие отношение к домашнему хозяйству — иными словами, к выработке белков, которые участвуют в переработке пищи и удалении отходов, — больше похожи на гены бактерий. Открытие этих чужеродных генов говорит о том, что ранняя эволюция жизни была куда более сложной, чем считалось, — и куда более интересной.
Эти результаты вдохновили Карла Вёзе — микробиолога, который первым заговорил о трех основных ветвях жизни, — предложить новый взгляд на общего предка всей жизни на Земле. В момент перехода из мира РНК в мир ДНК жизнь все еще плохо умела воспроизводить себя. Еще не существовало ферментов, способных проверять качество копирования и корректировать ошибки, не существовало и других механизмов, которые обеспечивают точное копирование ДНК нашими клетками. Без подобных предосторожностей мутации происходили на каждом шагу. Только самые простые белки могли просуществовать хотя бы несколько поколений и не исчезнуть в результате мутаций; сложные белки, производство которых проходило по сложной и длинной генетической инструкции, были очень уязвимы.
Система воспроизводства была так ненадежна, что тогдашние гены имели больше шансов перейти от одного микроорганизма к другому, чем передаться по наследству следующему поколению. Древние микробы были очень просты, поэтому блуждающие гены могли с легкостью встраиваться в структуру своего нового дома и сразу же браться за дело — разлагать пищу, выбрасывать отходы и выполнять другие необходимые домашние дела. Понятно, что паразитические гены тоже могли проникать в живые клетки; они заставляли гены хозяина производить свои копии, которые затем покидали клетку и заражали другие микроорганизмы.
Вёзе утверждает, что во времена молодости Земли не было и не могло быть никакой генеалогии. Жизнь еще не разделилась на отдельные наследственные линии, и потому нельзя сказать, что общим предком всех живых существ на Земле было существо какого-то определенного вида. Наш общий предок — все микроорганизмы, обитавшие в то время на Земле, некая изменчивая матрица генов, покрывавшая всю планету.
Но наступило время, когда блуждающим генам стало труднее устраиваться в новом хозяине как дома. Начали появляться новые, более сложные генные системы, способные лучше выполнять свои обязанности. Для сравнения представьте: сезонный рабочий, умеющий собирать фрукты, ворошить сено или кидать навоз, появляется на современной ферме, где работники привыкли управлять сложным оборудованием при помощи компьютеров. Он не сможет вписаться в систему. Чем более специализированными становились генные системы, тем точнее они воспроизводили ДНК. Теперь гены можно было передавать по наследству, от поколения к поколению, формируя очевидные наследственные линии. Из мутного пруда ранней эволюции вышли три базовые ветви жизни: эукариоты, архей и бактерии. Они разделились и полностью обособились, но каждая из них несла в себе набор самых разных генов — как напоминание о смешанном происхождении.
Если Вёзе окажется прав, древо жизни снова придется перерисовывать — и тогда оно будет напоминать уже не куст, а мангровые заросли, где множество корней в основании будет символизировать смешение генов на раннем этапе развития жизни. Постепенно из путаницы корней формируются три мощных ствола, но их ветви многократно переплетаются друг с другом.
Эволюция и время
Скорее всего, жизни потребовалось не слишком много времени, чтобы развиться от первых организмов, содержавших минимум генов, до настоящих микроорганизмов, таких как цианобактерии, в которых уже более 3000 генов. Пока у ученых мало данных о ранней хронологии жизни, но известные факты позволяют предположить, что вначале эволюция шла быстрыми темпами. Окаменелости из Австралии, к примеру, показывают, что 3,5 млрд лет назад на Земле определенно уже жили микроорганизмы, похожие на сегодняшние цианобактерии. Молекулярные следы из Гренландии свидетельствуют, что 3,85 млрд лет назад, т. е. на 350 млн лет раньше, на нашей планете уже была какая-то жизнь. Ученые не могут точно сказать, какого рода жизнь оставила в Гренландии свои следы, но ясно, что эта жизнь уже начала менять химический состав океанов и атмосферы на глобальном уровне. Возможно, это были микроорганизмы, подобные цианобактериям, возможно, всего лишь организмы мира РНК, — а может быть, и что-то промежуточное.
Теперь сравним то, что нам известно об истории жизни, с тем, что мы знаем об истории нашей планеты. Земле 4,55 млрд лет, и первые несколько сотен миллионов лет она то и дело плавилась целиком в результате страшных столкновений. Любая жизнь, возникшая в то яростное время, наверняка погибла бы. Но даже после того, как планета достигла своего сегодняшнего размера и начали формироваться океаны, с небес каждые несколько миллионов лет продолжали падать громадные камни по миллиону тонн. Если в моменты таких катастроф на Земле существовала жизнь, она могла уцелеть разве что в каких-то недоступных убежищах — к примеру, в полостях подводных вулканов. Но могла и не уцелеть. Последний ураган титанических столкновений произошел 3,9 млрд лет назад; 50 млн лет спустя жизнь на Земле уже играла заметную роль, а еще через 350 млн лет на планете определенно изобиловали сложные микроорганизмы.
Как могла столь сложная генетическая система развиться так быстро? Биологи, создававшие синтетическую теорию эволюции, рассматривали в основном небольшие генетические изменения — к примеру, замену А на G в определенном месте определенного гена — и их вклад в крупные эволюционные перемены. Но оказывается, у эволюции есть еще одна важная составляющая: случайная дупликация целых генов.
Дупликация генов происходит примерно с той же частотой, что и мутации с заменой единственного основания в составе гена. Какая судьба ожидает новую копию гена, неизвестно. Может быть, она будет производить дополнительно тот же белок, который производил первоначальный ген, и тем самым увеличит приспособленность организма. Скажем, если этот белок играет важную роль в переработке пищи, то большее количество его молекул позволит организму питаться более эффективно. В этом случае естественный отбор будет поддерживать существование двух одинаковых генов.
Но второй ген может оказаться и лишним. В этом случае мутация, результатом которой стала вторая копия, никак не повлияет на приспособленность организма — ведь оригинальный ген продолжает делать свою работу. Мутации лишних генов в большинстве случаев просто делают их совершенно бесполезными. В нашей ДНК полно таких генетических призраков, известных как псевдогены. Но иногда мутация так преобразует ген-копию, что тот получает способность производить новые белки, которые, в свою очередь, могут выполнять новые задачи.