Книга Чудесная жизнь клеток. Как мы живем и почему мы умираем, страница 6. Автор книги Льюис Уолперт

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Чудесная жизнь клеток. Как мы живем и почему мы умираем»

Cтраница 6

Затем Морган обнаружил еще трех дрозофил, имеющих общие характерные признаки, которые были связаны с полом, и смог доказать, что за каждый из них отвечала особая область хромосомы, или ген. После этого ученые смогли наконец точно определить место генов в составе хромосом, и это позволило заложить фундамент науки генетики. Было признано, что гены — единственный механизм, отвечающий за передачу наследственных признаков от родителей потомству. Дрозофилы до сих пор остаются важным объектом генетических исследований, а Моргану за его достижения в этой сфере в 1933 году была присуждена Нобелевская премия.

Большая часть исследователей полагала, что ген сформирован на основе белка. Обнаружение в 1920-е годы вирусов, которые обладали способностью воспроизводиться внутри бактерий, подтвердило верность этих взглядов, поскольку исследования показали, что в 90 процентах случаев вирусы состояли из белка. В 1928 году были получены данные, которые указывали на то, что наследственная информация содержится в ДНК. Исследуя бактерию, которая вызывала пневмонию, британский медик и ученый-генетик Фред Гриффитс обнаружил, что эта бактерия существует в двух разновидностях: вирулентной, вызывающей заболевание в подопытных мышах, и безвредной. Когда он нагревал раствор с вирулентными штаммами, они также становились безвредными. Однако, к его удивлению, если он вводил подопытным мышам раствор с вирулентными штаммами, который был обезврежен в ходе нагревания, вместе с раствором с безвредными штаммами, то мыши заболевали пневмонией. Получалось, что вирулентные штаммы даже после того, как их подвергли нагреванию, сохраняли способность передавать свои болезнетворные качества безвредным штаммам.

Для того чтобы выяснить, что же именно передается в этом случае, ученым потребовалось пятнадцать лет, и они установили, что передается именно ДНК. Это открытие вызвало удивление, поскольку в те годы ученые полагали, что передаваться должны белки. Что ДНК содержит наследственный материал, выяснилось в ходе проведенных в 1944 году экспериментов с вирусами. Сами вирусы состоят из белка и ДНК, и исследования доказали, что наследственная информация, которая приводила к образованию новых вирусов, содержалась лишь в ДНК. В конце 1940-х годов было доказано, что качества бактерии меняются не под воздействием белка, но под воздействием ДНК. Однако некоторые ученые сомневались, что гены образованы спиралями ДНК. Предположение, что наследственный материал содержится именно в ДНК, а не в белках, получило окончательное подтверждение в начале 1950-х годов после открытия Криком и Уотсоном двойной спирали ДНК. Затем последовало открытие механизма саморепродукции ДНК и обеспечения строительства белков согласно содержащемуся в ДНК наследственному коду. Так ученые начали приближаться к пониманию молекулярной основы функционирования клеток.

Они выяснили, в чем заключаются функции хромосом, однако функции митохондрий удалось разгадать только в 1950-х годах. Эти небольшие образования были обнаружены во всех клетках, кроме клеток бактерий, еще в XIX столетии, однако выяснить их функцию тогда не смогли. Само название «митохондрии» отражает впечатления от их внешнего вида, зафиксированное впервые обнаружившими их учеными, — в основе его лежат греческие слова «нить» и «гранулы». В течение многих лет после открытия митохондрий ученые ошибочно полагали, что их функция состоит в переносе наследственной информации. Только в 1950-е годы их удалось извлечь из клеток и выяснить их структуру при помощи электронного микроскопа. Отделить митохондрии от других структур клетки удалось следующим образом: большое количество клеток надрезали и помещали в центрифугу. Поскольку удельный вес митохондрий отличается от удельного веса других структур клетки, в процессе центрифугования они отделяются. В результате биохимического исследования митохондрий ученые установили, что они обеспечивают клетки энергией, поставляя ее в форме АТФ — аденозинтрифосфорной кислоты.

При исследовании клеток ученым зачастую необходимо иметь в своем распоряжении большое количество одинакового материала для проведения биохимического анализа. Извлечение клеток из живого организма — если только речь не идет о клетках крови — представляет собой немалую трудность. Поэтому встал вопрос о том, чтобы научиться выращивать их в искусственной питательной среде. Такие технологии стали разрабатывать с конца 1890-х годов, настоящий же прорыв в этой области произошел в 1907 году, когда ученые научились искусственно культивировать клетки тканей в течение нескольких недель.

Большинство клеток, изъятых из живого организма и помещенных в искусственную питательную среду, растут там в течение ограниченного периода времени — по причинам, которые будут объяснены позднее. Однако в процессе исследований выяснилось, что возможны практически «бессмертные» популяции клеток; они-то и оказались наиболее удобным объектом для изучения. Одна такая популяция клеток, которую называют «ГеЛа», возникла из тканей Генриетты Лакк, проходившей лечение по поводу рака шейки матки в 1951 году. Саму Генриетту Лакк раковая опухоль в конце концов убила. Популяция же клеток «ГеЛа», взятая из ее тела, оказалась весьма живучей. Благодаря наблюдениям за ней удалось изучить многие аспекты жизнедеятельности клеток — такие, как, например, рост внутри клеток вирусов полиомиелита. Всего только за два года в различные лаборатории по всему миру для изучения было разослано 600 тысяч образцов клеточных культур «ГеЛа».

Ученые серьезно продвинулись вперед, когда научились выделять из ткани клетки разных типов. Причем не беда, если первоначально удается выделить слишком малое число клеток какого-то одного типа — искусственная питательная среда поможет увеличить их количество. При этом большая часть клеток в искусственной среде сохраняет свои изначальные свойства: у нервных клеток вытягиваются длинные отростки-аксоны в поисках тех объектов, куда они могут передать нервный импульс, мускульные клетки непроизвольно сокращаются, а клетки ткани могут, размножаясь, формировать новые слои.

Все это позволило дать твердое научное обоснование клеточной теории. От того, как функционируют клетки, зависит жизнедеятельность организма и развитие в нем различных заболеваний, которые являются следствием неправильного функционирования клеток. Такой подход позволяет анализировать болезненные процессы на клеточном уровне. Он применяется при патологоанатомических исследованиях, когда определенные участки тканей исследуются при помощи микроскопа, чтобы выявить отклонения в развитии клеток, приводящие к болезни.

Клеточная теория позволила выработать общий универсальный подход к проблемам биологии. Эта теория подчеркивает глубинное единство всего живого и лежит в основе концепции о том, что все живые организмы представляют собой своеобразные «республики элементарных живых частиц» — иными словами, являются сообществом клеток.

Все клетки происходят от одного и того же общего прародителя, и все они в процессе эволюции сохранили свои основные базовые свойства. Подобные свойства клеток и живых организмов обусловливают то, что познание особенностей функционирования одного живого организма способно в большинстве случаев обеспечить понимание и познание другого живого организма, включая и человеческий, что крайне ценно, ведь с человеческим организмом особенно не поэкспериментируешь, в то время как эксперименты на мышах, лягушках, мушках, морских ежах, червях и бактериях способны дать нам знания, касающиеся всего живого, в том числе и нас самих. Например, обитающая в человеческом кишечнике бактерия Escherichia coli, которая вырабатывает 4300 различных белков, хорошо растет и быстро размножается. Исследованиям этой бактерии мы обязаны значительному росту наших знаний о молекулярных основах жизнедеятельности клеток, включая знания о воспроизводстве информации ДНК и белковом синтезе. Изучение многоклеточных животных, таких, как плодовые мушки, заложило основы классической генетики. Изучение лягушек, мышей и цыплят позволило узнать особенности эмбрионального развития позвоночных животных.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация