Ф. Гальтон демонстрирует возможность использования близнецов для изучения относительного влияния на организм наследственности и окружающей среды.
1900 год
Формальное рождение генетики как науки. Независимая публикация статей Г. де Фриза, К. Корренса и Э. Чермака с изложением основных законов наследования. «Переоткрыты» и стали известны широкой научной общественности исследования Г. Менделя.
1902 год
В. Саттон и Т. Бовери независимо создают хромосомную теорию наследственности.
1905 год
У. Бэтсон предлагает слово «генетика» (от греч. γιγνομαι — порождать) для нового направления науки.
1910 год
Т. Г. Морганом установлено, что гены расположены в хромосомах в линейном порядке, образуя группы сцепления. Морган установил также закономерности наследования признаков, сцепленных с полом (Нобелевская премия 1933 г. по физиологии и медицине за экспериментальное обоснование хромосомной теории наследственности).
А. Кёссель получил Нобелевскую премию по химии за установление того, что в состав ДНК входят четыре азотистых основания: аденин, гуанин, цитозин и тимин.
1922 год
Н. И. Вавилов сформулировал «закон гомологических рядов» — о параллелизме в изменчивости родственных групп растений, то есть о генетической близости этих групп. Закон Вавилова установил определенные правила формообразования и позволил предсказывать у данного вида еще не открытые, но возможные признаки (аналогия с системой Менделеева).
1925 год
Г. А. Надсон, Г. С. Филиппов, Г. Мюллер проводят первый цикл работ по радиационным методам индукции мутаций.
1926 год
С. С. Четвериков написал статью, заложившую основы популяционной генетики и синтеза генетики и теории эволюции.
1927 год
Г. Мюллер доказал мутационный эффект рентгеновских лучей, за что в 1946 г. получил Нобелевскую премию в области физиологии и медицины.
Н. К. Кольцов выдвинул идею матричного синтеза, которая и сегодня отвечает современным представлениям биологов: «В основе каждой хромосомы лежит тончайшая нить, которая представляет собой спиральный ряд огромных органических молекул — генов. Возможно, вся эта спираль является одной гигантской длины молекулой».
1928 год
Открытие явления трансформации у бактерий (Ф. Гриффит).
1929–1930 годы
А. С. Серебровский и Н. П. Дубинин впервые продемонстрировали сложную природу организации гена; первые реальные шаги на пути создания современного представления о тонкой структуре гена.
1931 год
Барбара Мак-Клинток продемонстрировала наличие кроссинговера.
1934 год
Н. П. Дубинин и Б. Н. Сидоров открыли особый тип эффекта положения.
Б. Л. Астауров осуществил успешные опыты по получению у шелкопряда потомства из неоплодотворенных яиц (одно из самых интересных достижений в прикладной генетике того времени).
1935 год
Н. В. Тимофеев-Ресовский, К. Г. Циммер, М. Дельбрюк осуществили экспериментальное определение размеров гена. Ими дана трактовка гена с позиций квантовой механики, тем самым был создан фундамент для открытия структуры ДНК.
1940 год
Дж. Бидл и Э. Татум сформулировали теорию «один ген — один фермент». (Нобелевская премия по физиологии и медицине за 1958 г.).
1943 год
И. А. Рапопорт, Ш. Ауэрбах и Дж. Г. Робсон впервые показали индукцию мутаций химическими веществами.
1944 год
О. Эвери, К. Маклеод и М. Маккарти установили, что «веществом гена» служит ДНК. Начало «эры ДНК».
М. Дельбрюк, С. Лурия, А. Херши произвели пионерские исследования по генетике кишечной палочки и ее фагов, после чего эти объекты стали модельными для генетических исследований на многие десятилетия. (Нобелевская премия по физиологии и медицине за 1969 год за открытие цикла репродукции вирусов и развитие генетики бактерий и вирусов).
Л. А. Зильбер сформулировал вирусно-генетическую теорию рака.
1950 год
Э. Чаргафф сформулировал знаменитое «правило Чаргаффа», которое гласит: в ДНК число нуклеотидов А равно числу Т, а число Г — числу Ц.
Б. Мак-Клинток показала существование перемещающихся генетических элементов. С большим опозданием (только в 1983 г.) она получила за это Нобелевскую премию в области физиологии и медицины.
1951 год
Р. Франклин и М. Уилкинсон получили первую рентгеннограмму молекулы ДНК.
1953 год
Ф. Крик и Дж. Уотсон, опираясь на результаты опытов генетиков и биохимиков и на данные рентгеноструктурного анализа, создали структурную модель ДНК в форме двойной спирали. В 1962 году им совместно с М. X. Ф. Уилкинсом присуждена Нобелевская премия по физиологии и медицине.
1956 год
Ю. Тио и A. Леван установили, что диплоидный набор хромосом у человека равен 46.
А. Корнберн обнаружил первый фермент, способный синтезировать ДНК в пробирке — ДНК-полимеразу I. В 1959 году он совместно с С. Очоа получил Нобелевскую премию по физиологии и медицине за исследование механизма биологического синтеза РНК и ДНК.
1958 год
М. Мезельсон и Ф. Сталь доказали полуконсервативный механизм репликации ДНК.
1960 год
Открытие РНК-полимеразы С. Б. Вейсом, Дж. Гурвицем и А. Стивенсом.
И. А. Рапопорт сообщил об открытии «супермутагенов».
1961 год
В работах М. У. Ниренберга, Р. У. Холли и X. Г. Кораны начата расшифровка «языка жизни» — кода, которым в ДНК записана информация о структуре белковых молекул. В 1968 году все трое разделили Нобелевскую премию по физиологии и медицине, которая была присуждена им «за расшифровку генетического кода и его функционирования в синтезе белков».
Ф. Жакоб и Ж. Моно пришли к выводу о существовании двух групп генов — структурных, отвечающих за синтез специфических (ферментных) белков, и регуляторных, осуществляющих контроль за активностью структурных генов. В 1965 г. Нобелевская премия по физиологии и медицине присуждена А. М. Львову, Ф. Жакобу и Ж. Моно за открытие генетической регуляции синтеза ферментов и вирусов.
1962 год
Дж. Гёрдон осуществил первое клонирование животного организма (лягушка).
Дж. Кэндрью и М. Перутц были удостоены Нобелевской премии по химии за впервые осуществленную расшифровку трехмерной структуры белков миоглобина и гемоглобина.