Книга Геном человека: Энциклопедия, написанная четырьмя буквами, страница 42. Автор книги Вячеслав Тарантул

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Геном человека: Энциклопедия, написанная четырьмя буквами»

Cтраница 42

Приведем лишь один пример. Надо было выяснить, чем отличается картина экспрессии генов в раковых клетках по сравнению с нормальными. Продукты экспрессии раковых клеток метили флуоресцентным красителем с максимумом флуоресценции в красной области спектра. Одновременно также метили продукты нормальных клеток, но красителем, максимум флуоресценции которого лежит в зеленой области спектра. Все это смешивалось и гибридизовалось с микрочипом, на котором содержались пробы для примерно 20 тыс. различных генов. Во флуоресцентном микроскопе получалась замечательная по красоте картинка (см. рис. 31 на цветной вклейке). Но расшифровать ее позволяет только специальный компьютерный анализ. В результате исследователи могут сделать довольно однозначный вывод о поведении в раковой клетке огромного числа генов и сравнить их поведение в нормальной клетке. Отсюда в конечном итоге можно прийти к пониманию молекулярных причин определенного злокачественного перерождения клетки. Результат, получаемый молекулярными генетиками с помощью микрочипа, можно сравнить с теми данными, которые дает астрономам фотография звездного неба, когда по размеру и яркости звезд они определяются происходящие в космосе события. Человеческий организм — это космос для биологов.


Геном человека: Энциклопедия, написанная четырьмя буквами

Рис. 31. Общая картина гибридизации меченых флюоресцентными красителями зондов с микрочипом, изображающая спектры генов, работающих сильнее (красным цветом) или слабее (зеленым цветом) в раковых клетках по сравнению с нормальными клетками.

Моделирование — важный подход к пониманию функции генов

Естественно, что ученые не всегда могут проводить испытания на живом человеческом организме. Но из этого положения есть определенный выход. Сравнения геномов простых и сложных организмов указывает на существенный консерватизм функций генов. Этот консерватизм не только демонстрирует тот факт, что жизнь на земле основана на общих принципах, но и предоставляет экспериментаторам инструмент, позволяющий, исследуя функции генов у простых организмов, делать заключения о функции генов у более сложных, включая человека. По этой причине уже давно в экспериментах стали широко использовать различные животные организмы, говоря в этих случаях о моделировании процессов, происходящих у человека. Для моделирования используются различные животные, начиная от нематоды и кончая обезьянами.

Модель — это конечно же образец, некое подобие оригинала (свирель не может заменить соловья), но она зачастую много говорит ученым о самом оригинале. При этом модель помогает решить главную проблему — понять человека, не затрагивая в экспериментах его самого. Напрашивается такая, хотя и несколько отдаленная, литературная аналогия. Это все равно, как сравнивать достоверную летопись об определенном событии и легенду или сказку, где это также отражено. Хотя сказка несет элемент фантазии, но даже в ней всегда есть намек, который «добрым молодцам урок!»

Одним из наиболее широко используемых для моделирования организмов служит мышь. С ней мы часто боремся в быту, ругаем ее, травим, а вот в науке она остается одним из основных объектов исследования. Дело не только в том, что мышь — весьма доступный и дешевый объект, а главным образом в том (как это, может быть, не совсем приятно читателю), что устройство генома и сами гены у мыши довольно сходны с человеческими. В последние годы ученые научились даже получать мышей с генами человека. Для этой цели в качестве мишени используют обычно ее оплодотворенную яйцеклетку. Чаще всего ген вводят с помощью микропипетки в ядро этой клетки. При удачном стечении обстоятельств (обычно такое стечение происходит в 5–10 % случаях) ген встраивается в геном мыши и после этого становится таким же, как и собственные мышиные гены. В результате, когда из прооперированной яйцеклетки вырастает потомство, оно содержит новый, ранее не имевшийся у них ген — трансген. Такие животные получили название трансгенных. Например, когда мышам ввели ген гормона роста человека, они увеличили размер своего тела почти в два раза (рис. 32).


Геном человека: Энциклопедия, написанная четырьмя буквами

Рис. 32. Фотография нормальной мыши (справа) и трансгенной, содержащей ген гормона роста человека (слева)


Когда же им вводили человеческие «больные» онкогены, то у таких трансгенных мышей часто развивались опухоли того же типа, что и у человека. Подобного рода эксперименты были проведены уже с десятками сотен различных генов. Изучая биологические эффекты разнообразных (порой совершенно не изученных) генов у мышей, ученые довольно уверенно делают выводы об их вероятной функции у человека.

Более того, в последние годы были созданы специальные весьма изощренные и методически сложные генетические приемы, которые позволяют направленно изменять работу определенных, уже имеющихся мышиных генов в тех или других органах и на тех или иных этапах развития. В частности, найдены молекулярные подходы, которые позволяют полностью выключать работу строго определенных генов (это называют нокаутированием генов). Мыши с такими, находящимися «в нокауте» генами, дают возможность как выяснять роль для жизнедеятельности уже известных генов, так и идентифицировать новые гены, важные для различных аспектов жизни человека.

ОТ ГЕНА — К БЕЛКУ (протеомика)

Что посеяно, то и взойдет.

Русская пословица

Сам по себе ген — лишь определенная последовательность нуклеотидов. Его основная задача — обеспечить производство на свет строго определенного белка (в крайнем случае РНК). Существует даже выражение: «гены — поваренная книга, испещренная тысячами рецептов; белки — угощение, выставленное на стол». В постгеномную эру появились новые возможности не только для функциональной геномики, но и для исследования самих белков — основных кирпичиков живого.

Белки (или, как еще их называют, протеины) известны нам уже около 200 лет. В начале XIX столетия химики выбрали имя «протеины» для этих веществ от греческого слова «proteios», означающего «первый» или «важнейший». В русском языке эти вещества чаще называются белками. И вот теперь, на базе геномики возникло новое направление исследований — протеомика. Протеомика — это изучение всей совокупности белков клеток и их взаимодействия в целом организме. Ученые в области протеомики изучают «производство» белков, их структуру и состав, различные модификации после синтеза, функции и метаболизм. Все эти исследования имеют одну общую цель: идентифицировать все белки, работающие в каждом типе клеток в каждый определенный момент их жизненного цикла, и понять в совокупности их сложный метаболизм.

Масштаб предстоящей работы представляется огромным. Ведь во взрослом организме человека в 1014 его различных клеток функционирует несколько десятков тысяч генов. Но гены кодируют лишь белки, а не их сборку в работающую «машину». Белковый «текст» — это трехмерный мир, намного превышающий возможности ДНКового текста. Как пишет американский биолог Роберт Поллак, «гены — это линейный текст, а белки — трехмерная скульптура». В белковом тексте, условно говоря, «буква» — это аминокислота, корень «слова» — последовательность аминокислот в единичном полипептиде. Свертываясь в трехмерную структуру, единичный полипептид формирует по сути дела полное «слово», которое уже может быть и простым «предложением». Вдобавок, в живой клетке форма белков может динамически меняться, что превращает их в подобие более сложной, «кинетической» скульптуры. Далее возникают сложнейшие «предложения» — комплексы, состоящие из десятков и даже сотен белков. Таким образом, разнообразие белковых вариантов у нас значительно больше, нежели генов. По некоторым оценкам, белковых вариантов и их всевозможных комплексов в наших клетках может набраться аж миллион! Связано это с тем, что, как говорилось выше, с одного гена за счет альтернативного сплайсинга возможно получение нескольких разных РНК-копий, которые способны кодировать разные белковые цепи (полипептиды). Последние, в свою очередь, могут по-разному взаимодействовать друг с другом, образуя комплексы, состоящие из 2–4 и более полипептидов. При этом формируются многочисленные белковые комплексы, обладающие порой разными функциями. Например, ген по имени Ikarus за счет альтернативного сплайсинга способен обеспечивать образование 6-ти различных полипептидов. А далее из них в клетке может сформироваться около 20 разнообразных белковых комплексов, состоящих или из одинаковых, или разных полипептидов. Таким образом, наш организм содержит гигантское число вариантов белковых молекул. Все это существенно осложняет на сегодняшний день возможность создания «каталога белков».

Вход
Поиск по сайту
Ищем:
Календарь
Навигация