Книга Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности, страница 37. Автор книги Несса Кэри

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности»

Cтраница 37

Мы знаем, что это не какое-то уникальное явление, присущее только мышам, поскольку то же самое происходит естественным образом и у людей. Например, примерно в одном из 1500 случаев беременности у представительниц человечества в матке формируется плацента, но как такового плода в ней нет. Эта плацента аномальна, она вся покрыта наполненными жидкостью и похожими на виноградины «пузырьками». (Клетки оплодотворенной яйцеклетки размножаются не как положено, а начинают бурно и бесконтрольно делиться и наполняются жидкостью, так что напоминают виноградную гроздь. Прим. редактора). Такое образование называется хорионаденомой или пузырным заносом, и в некоторых азиатских странах частота сопровождаемых ею беременностей может достигать одной на 200 случаев. Женщины исправно прибавляют в весе, часто быстрее, чем при нормальной беременности, а по утрам испытывают тошноту, сопровождаемую рвотой, нередко очень сильной. Стремительно растущие плацентарные структуры вырабатывают в аномально высоких количествах гормон, который считается ответственным за симптомы тошноты во время беременности.

В странах с развитой инфраструктурой здравоохранения хорионаденома обычно диагностируется уже при первом ультразвуковом обследовании, после чего медицинские работники проводят необходимые мероприятия по прерыванию беременности. Если патология определена не сразу, то она приводит к самопроизвольному выкидышу, который случается на четвертый-пятый месяц после оплодотворения. Ранняя диагностика хорионаденом очень важна, так как, оставленные без вмешательства, они могут стать причиной образования потенциально опасных опухолей.

Хорионаденомы формируются в случае оплодотворения яйцеклетки, в которой по какой-то причине отсутствует ядро. Почти в 80 процентах хорионаденомных беременностей пустая яйцеклетка оплодотворяется единственным сперматозоидом, и гаплоидный геном сперматозоида копируется для создания диплоидного генома. Примерно в 20 процентах случаев пустая яйцеклетка оплодотворяется одновременно двумя сперматозоидами. В обеих ситуациях оплодотворенная яйцеклетка имеет необходимое количество хромосом (46), но вся ДНК поступает от отца. По этой причине развивается патология плода. Как и экспериментальным мышам, человеку для нормального развития необходимы хромосомы и матери, и отца.

Это встречающееся у человека явление, равно как и эксперименты с мышами, невозможно объяснить моделью, опирающейся только на код ДНК, в которой ДНК является голой молекулой, несущей лишь информацию, зашифрованную в последовательности пар оснований А, Ц, Г и Т. Сама ДНК не несет в себе всю необходимую для создания новой жизни информацию. Кроме генетической информации, для этого требуется нечто еще. Нечто эпигенетическое.

Яйцеклетки и сперматозоиды — в высшей степени специфические клетки, они располагаются на самом дне одной из уоддинпоновских впадин. Яйцеклетка и сперматозоид никогда не смогут стать какими-либо другими клетками и всегда будут оставаться только яйцеклеткой и сперматозоидом. Они могут только слиться между собой. Слившись, эти две высокоспециализированные клетки образуют одну клетку, которая настолько неспециализированная, что является тотипотентной и дает начало каждой клетке человеческого организма, равно как и плаценте. Это зигота, располагающаяся на самой вершине эпигенетического ландшафта Уоддингтона. По мере целения этой зиготы клетки становятся все более и более специфическими, образуя все ткани нашего организма. Из некоторых этих тканей в конечном итоге формируются яйцеклетки или сперматозоиды (в зависимости, понятно, от нашего пола), и весь цикл готов повториться вновь. Это в полном смысле слова непрекращающийся цикл биологии развития.

Хромосомы в пронуклеусах сперматозоидов и яйцеклеток несут в себе огромное количество эпигенетических модификаций. Они являются частью того механизма, который заставляет гаметы вести себя, как надлежит гаметам, и не превращаться в клетки других типов. Но эти гаметы неспособны передавать дальше свои эпигенетические схемы, так как в противном случае оплодотворенная зигота стала бы неким гибридом, состоящим наполовину из сперматозоида и наполовину из яйцеклетки, чего в действительности, как мы понимаем, не происходит. Это совершенно отличная и от сперматозоида, и от яйцеклетки тотипотентная клетка, дающая начало абсолютно новому индивидууму. Каким-то образом модификации яйцеклеток и сперматозоидов преобразуются в принципиально иной набор модификаций, направляющий оплодотворенную яйцеклетку в иное клеточное состояние, на новое место уоддингтоновского эпигенетического ландшафта. И это часть нормального развития.

Переустановка операционной системы

Почти мгновенно после того как сперматозоид проникает в яйцеклетку, в ней начинают осуществляться разительные превращения. Почти все метилирование мужского пронуклеуса ДНК (то есть полученное от сперматозоида) стирается, и происходит это невероятно быстро. Такие же изменения претерпевает и ДНК женского пронуклеуса, хотя и протекают они намного медленнее. Это означает, что большая часть эпигенетической памяти удаляется из генома. Это жизненно важно для того, чтобы зигота оказалась на вершине уоддингтоновского эпигенетического ландшафта. Зигота начинает делиться и вскоре образует бластоцисту — «мячик для гольфа внутри теннисного мяча» из Главы 2. Клетки «в мячике для гольфа» — внутриклеточная масса или ВКМ — плюрипотентные, те самые, из которых в лабораторных условиях получают эмбриональные стволовые клетки.

Клетки ВКМ вскоре начинают дифференцироваться и образовывать клетки различных типов нашего организма. Это происходит в процессе предельно жестко регулируемой экспрессии некоторых ключевых генов. Какой-нибудь специфический белок, например ОСТ4, активирует другой набор генов, что приводит к следующей ступени генной экспрессии, и так далее. Мы уже встречались с ocmt4 — это важнейший из генов, которые использовал профессор Яманака для перепрограммирования соматических клеток. Такая каскадная экспрессия генов вызывает эпигенетическую модификацию генома, меняя метки на ДНК и гистонах так, чтобы одни гены оставались активированными, а другие репрессировались. Вот в какой последовательности происходят эпигенетические события на самых ранних этапах развития:

1. Мужской и женский пронуклеусы (из сперматозоида и яйцеклетки соответственно) несут эпигенетические модификации;

2. Эпигенетические модификации утрачиваются (в зиготе сразу же после оплодотворения);

3. Новые эпигенетические модификации занимают их место (и клетки начинают специализироваться).

Это, конечно, существенно упрощенная модель. Несомненно, что ученые могут выделить несколько стадий деметилирования ДНК, имеющих место на втором этапе нашего списка. Однако в действительности все происходит еще намного сложнее, особенно в части, касающейся гистоновых модификаций. Пока одни гистоновые модификации удаляются, другие устанавливаются. В то же время, когда удаляется репрессивное метилирование ДНК, вместе с ним также стираются и определенные гистоновые метки, подавляющие генную экспрессию. Их место могут занять другие гистоновые модификации, которые повышают экспрессию генов. Поэтому было бы слишком наивно полагать, что эпигенетические изменения подразумевают лишь удаление одних и установление других эпигенетических модификаций. В действительности перепрограммируется сам геном.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация