Средняя горизонтальная скорость ветра на высоте 54 км. составляет 65-70 м/с. Выше верхней границы облаков (70 км.) скорость ветров быстро падает. Она уменьшается также в глубь атмосферы, где увеличивается плотность газа. Наибольшую кинетическую энергию несут потоки газа в интервале 16-32 км. Ниже 10 км. скорость ветра — всего единицы метров в секунду. Прямые измерения скорости ветра у поверхности планеты показали от 0,4 до 1,3 м/с. Правда, из-за высокой плотности атмосферы, которая в 54 раза плотнее земной, эти скорости эквивалентны по динамическому давлению (ρυ2) в 7—8 раз более быстрым земным ветрам. По-видимому, этого все-таки недостаточно, чтобы пыль поднималась с поверхности, поскольку измерения неизменно показывают, что ниже облачного слоя атмосфера представляет собой чистую, незамутненную газовую среду.
Зональные ветры ураганной скорости (300 км/ч и более) охватывают широты от экватора до ±40°. Выше их скорость уменьшается, а в приполярных областях динамика атмосферы резко меняется. Здесь, по крайней мере у северного полюса, расположен так называемый полярный вихрь, который, по-видимому, включает в себя нисходящие потоки газа.
С суперротацией связан такой парадокс. Масса атмосферы составляет ощутимую часть (10—4) всей массы планеты. Между атмосферой и поверхностью есть трение. Тогда, каковы бы ни были причины быстрого движения атмосферы, вращаясь в одну и ту же сторону из века в век, она должна передавать поверхности часть своего момента импульса. Иными словами, атмосфера должна разгонять твердое тело планеты. В действительности же мы видим, что вращение Венеры заторможено, причем период ее вращения настолько близок к резонансному относительно Земли, что это не может быть случайным. Почему атмосфера не ускоряет вращения планеты, остается неясным.
Природа облаков Венеры и их роль в тепловом балансе
До полета«Венеры-8» было распространено мнение, что облака Венеры очень плотные. Считалось даже возможным, что на поверхности планеты царит вечная ночь. Все предшествовавшие аппараты опускались на ночной стороне, где заведомо темно и фотометрировать нечего. Спуск «Венеры-8» в районе утреннего терминатора (с местным временем около 6ч. 25мин.) позволил установить, что на поверхности светло, освещенность составляет сотни люксов. Особенно подробные исследования спектра освещенности и строения облаков в дневной зоне были выполнены в 1975—1982 гг. новым поколением зондов «Венера» (СССР) и «Пионер-Венера» (США). По мере спуска, от уровня 70 км. освещенность постепенно падает. Но даже на поверхности она остается еще высокой. Днем там примерно так же светло, как на Земле в пасмурный день со сплошной (но не грозовой) облачностью.
Строение облаков Венеры
Облака Венеры совсем не похожи на мощную облачность Земли. Они скорее напоминают туман, когда предметы, удаленные на несколько километров, становятся невидимыми. Кажущаяся плотность объясняется только большой протяженностью этого облачного слоя.
На высоте от 49 до 67 км. находятся три относительно плотных яруса облаков с периодически меняющейся концентрацией частиц и очень тонкие слоистые облака под их нижней границей. Вниз от 49 км. начинается практически безоблачная атмосфера. Под толстым слоем облаков находится глубочайший океан сильно сжатого углекислого газа. Газ настолько плотен, что и без облаков сильно рассеивает свет. Если облака ослабляют его всего в 2—3 раза, то подоблачная атмосфера — еще раз в 10. Вероятно, даже с высоты 25 км. поверхность планеты не видна. (Все же есть узкое спектральное «окно прозрачности» вблизи 1 мкм).
Состав облаков Венеры
Облака Земли, как известно, состоят из мелких капель воды. Но приписать ту же природу венерианским облакам не удавалось: хотя данные говорили о жидких каплях, но это не могла быть вода. Во-первых, количество водяного пара там очень мало. Во-вторых, измерения показали, что коэффициент преломления света у частиц в облаках Венеры составляет 1,44 (у воды он 1,33). К тому же, температура в верхней части облаков (—40°С) исключает жидкую воду.
Только в 1973 г. удалось найти химическое соединение, которое отвечало всем имевшимся данным. Верхний ярус венерианских туманоподобных облаков, расположенный в интервале высот от 57 до 75 км., — это мельчайшие капли с оптическими свойствами концентрированной 80%-ной серной кислоты. Их диаметр очень мал: 0,4—2 мкм. На высоте 66 км. таких частиц около 300 на 1 см3. Концентрация двухмикронных капелек в верхнем слое с увеличением высоты убывает практически до нуля, но более мелкие частицы, около 0,4 мкм., присутствуют здесь в большом количестве. Вероятно, здесь они и образуются из газовой фазы. Нижняя граница облаков 48—49 км. обладает какими-то критическими для капелек свойствами. Температура здесь близка к 110°С, а давление 1,1 бар.
Тепловой баланс Венеры
Облачный покров Венеры практически непроницаем для инфракрасного теплового излучения; это своеобразное «одеяло» планеты. Ее тепловой баланс почти полностью определяет уходящее в космос излучение самих облаков в диапазоне 7—25 мкм. Кроме этого Венера светится и в ближнем инфракрасном диапазоне 1—2,5 мкм. Свечение исходит от поверхности и из нижних, раскаленных слоев атмосферы; оно пробивается сквозь поглощающее «одеяло» углекислого газа в узких спектральных полосах, так называемых «окнах прозрачности».
Эффективная температура теплового излучения (т.е. температура абсолютно черного тела, которое излучает с единицы поверхности столько же энергии, сколько реальное исследуемое тело) у Венеры ниже, чем у Земли. Казалось бы, это противоречит тому, что поверхность Венеры гораздо горячее земной. Но противоречия здесь нет: уходящее в космос тепловое излучение Венеры создается ее облачным слоем. Вспомним, что сферическое альбедо Венеры в оптическом диапазоне составляет 0,77. То есть, планета отражает 77% падающего на нее солнечного света и только 23% поглощает, в то время как Земля поглощает 67%. Если учесть, что потоки солнечной энергии у Земли и Венеры соотносятся примерно как 1:2, то различие получается в пользу Земли: она поглощает в 1,5 раза больше энергии и должна во столько же раз больше ее излучать. Поэтому излучающая поверхность Земли (в основном это твердая поверхность) горячее, чем излучающая поверхность Венеры — ее облачный слой. А лежащая под облаками твердая поверхность Венеры не имеет почти никакого отношения к радиационному балансу планеты.
Динамика и химия облаков
Измерения показывают, что размеры капель в венерианских облаках удивительно однородны, в отличие от земных облаков. Это значит, что мы видим слой из недавно образовавшихся частиц, иначе однородность их размеров была бы нарушена в процессе столкновений и слияний частиц. Напрашивается вывод, что этот сернокислотный дождь падает откуда-то сверху. С некоторым преувеличением можно сказать, что в метеорологии сухой атмосферы Венеры соединения серы играют ту же роль, что вода в метеорологии Земли. Сернистый газ SO2, которого довольно мало, около 3×10—5 от количества СО2, в присутствии мощного ультрафиолетового излучения Солнца в надоблачной атмосфере фотолитически окисляется кислородом в серный ангидрид SO3.