Книга Солнечная система, страница 60. Автор книги Алексей Бережной, Владимир Сурдин

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Солнечная система»

Cтраница 60

Солнечная система

Рис. Спутники Урана.


«Лежачее» положение оси вращения приводит к максимально возможным сезонным изменениям освещенности. При орбитальном периоде 84 года полярные день и ночь длятся по 14 лет на широте 30°, по 28 лет — на 60° и по 42 года на полюсах. Однако из сезонных эффектов (если они действительно сезонные) пока установлена только одна зависимость: за 20 лет, в течение которых центр видимого с Земли диска планеты смещался от экватора к полюсу, радиояркостная температура видимого полушария возросла вдвое, с 140 до 290 К.

Уран по наблюдениям «Вояджера-2»

До сближения «Вояджера» с Ураном оставалось неизвестным, как влияет необычное положение полярной оси на циркуляцию атмосферы. Телекамеры зонда задолго до сближения стали передавать на Землю изображения южного полушария, — ровного голубого диска, более темного к краям, без каких-либо заметных деталей. Сплошная дымка (скорее всего, из кристалликов замерзшего метана) полностью закрывает нижние слои облаков. Дымка чуть светлее и краснее у полюса.

В январе 1986 г. все же удалось обнаружить четыре очень слабых голубых облачка на широтах от 30° до 70°ю.ш. Они перемещались в долготном направлении и описывали концентрические окружности вокруг полюса. Отсюда был сделан вывод, что циркуляция атмосферы на Уране определяется силой Кориолиса (инерционной природы), а не притоком солнечной радиации. Так же организована циркуляция и в атмосферах других планет. Найденный по движению облачных образований период вращения атмосферы зависит от широты и составил 16,2ч. у 33°ю.ш. и примерно 14ч. у 70°ю.ш. Чтобы обнаружить эти образования, понадобились всевозможные ухищрения, например исключение потемнения к краю, так как контрасты, с которыми были видны облака, тонут в нормальном распределении яркости по шару Урана. Белая полоска на самом лимбе — надоблачный туман из кристаллов метана.

За счет циркуляции атмосфера очень эффективно выравнивает температуру на всех широтах, в том числе и в темном полушарии. Измерения приходящих от планеты тепловых потоков показали, что в подоблачной атмосфере, уже на уровне 2,3 бар, температура достигает 100 К. Выше, на уровне давления 0,6 бар, температура на экваторе, а также у светлого и темного полюсов одинакова и составляет 64 К, а в средних широтах — градуса на 2 ниже. Минимальная температура (53 К) наблюдалась на уровне давления 0,1 бар (выше видимой поверхности облаков). Еще выше температура снова возрастает, достигая 750 К на высоте до 6000 км. над облаками. Такую высокую температуру экзосферы, состоящей в основном из водорода, нельзя объяснить только излучением Солнца, которого на весь огромный диск планета получает в 140 раз меньше, чем маленькая Земля.

Если бы Уран и Нептун излучали только то тепло, которое они получают от Солнца, то их температура установилась бы на уровне 57 и 47 К соответственно. Такая температура называется равновесной. Но когда были проведены фактические измерения тепловых потоков, оказалось, что планеты имеют одинаковую эффективную температуру: 56—58 К. Это может означать только одно: Уран почти не имеет собственных источников энергии, а Нептун имеет, причем довольно мощные (подробнее об этом в следующем разделе). В результате Уран излучает столько же, сколько получает от Солнца, а Нептун — значительно больше. Некоторое различие есть и у Юпитера с Сатурном, но далеко не в такой мере. Если Уран имеет какие-то внутренние источники, они не превосходят 13% получаемого от Солнца тепла (а возможно, и меньше). С глубиной в атмосфере Урана температура растет, но медленнее, чем у Нептуна.

Низкое тепловое излучение Урана выделяет его из ряда других планет-гигантов. Предполагают, что у всех гигантов в результате происходящих при колоссальном давлении фазовых переходов водорода гелий становится нерастворимым в водороде и, как более плотный элемент, опускается к центру планеты, освобождая при этом значительную гравитационную энергию. Допустить, что для Урана этот механизм исчерпан, нельзя, так как соотношение гелий-водород у него такое же, как у Юпитера. Причина в чем-то другом.

Равенство температур у полюсов и экватора заставляет искать какие-то особые причины, определяющие метеорологию Урана. Одной из них может быть конденсация воды в атмосфере. На Земле конденсация влаги и выпадение осадков мало влияют на среднюю плотность атмосферы, изменяя ее не более чем на 2%. Но на Уране, где содержание паров воды, по-видимому, высокое, изменение плотности при конденсации паров может достигать 50%. Тогда движения в очень плотной атмосфере планеты становятся больше похожи на течения в земных океанах (которые вызываются изменениями солености воды).

Новые данные об Уране

В средних и высоких широтах атмосфера Урана вращается быстрее, чем недра планеты. Такое явление хорошо известно по атмосфере Венеры и носит название суперротации. Но относительно чего отсчитывать вращение планеты, если сама атмосфера занимает почти 2/3 ее радиуса? Здесь следует рассказать о внутреннем строении Урана.

Масса Урана была найдена методами наземной астрономии (по движению спутников планеты) и оказалась в 14,5 раза больше массы Земли. Средняя плотность составляет 1,29 г/см3, а ускорение свободного падения на уровне видимой границы облаков лишь чуть меньше земного. Сведения о внутреннем строении Урана долгое время опирались только на теоретические расчеты и аналогии с Юпитером и Сатурном. Последние, как выяснилось, вели к переоценке содержания гелия. К ревизии этих представлений привело открытие в 1977 г. (методами наземной астрономии) темных колец Урана, что имело важные последствия. С тех пор наблюдалось много покрытий звезд кольцами, благодаря чему удалось определить сферические гармоники J2 и J4 гравитационного поля планеты, описывающие его отличие от поля точечной массы или идеального шара. Еще один важный параметр — динамическое сжатие α=0,0114 был найден по наземным данным и результатам «Вояджеров», что позволило определить распределение масс в недрах планеты и скорость ее вращения. Полученный таким образом период вращения составил 16,2—16,4ч.

Самый надежный метод определения периода вращения — это измерение с космического зонда радиоизлучения магнитосферы планеты. Так удалось найти периоды вращения Юпитера (9ч. 55,5мин.) и Сатурна (10ч. 39,4мин.). Метод, по существу, дает период вращения магнитного поля. Но так как магнитное поле возбуждается достаточно глубоко в недрах, оно должно вращаться с тем же периодом, что и глубокие слои. Найденный таким образом период вращения Урана составил 17ч. 14,4мин.

Согласно современной модели, Уран имеет довольно большое ядро (около 0,3 радиуса планеты), построенное из тяжелых элементов — металлов и силикатов, а также «льдов» — метана, аммиака и воды, — трех соединений широко распространенных в космосе четырех элементов. Имеется в виду, что на уровне видимого облачного слоя у большинства гигантов эти соединения превращаются в лед. Ядро окружено толстой оболочкой из водорода и гелия с условной внешней границей около 0,7 радиуса планеты. Атмосфера Урана содержит 12% гелия (как у Юпитера), остальное — главным образом водород. Заметная составляющая Урана — это метан, до 2,3%. Но проблема отражательных свойств метана довольно сложна. С учетом этих сложностей содержание метана в газообразной фазе может быть значительно меньшим, на уровне десятых долей процента.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация