Увеличивающаяся доля сжигания органических веществ в балансе наземной части литосферы, рост стока растворенных веществ и увеличение стока наносов внутри континентов предопределяют усиление взаимосвязи между литосферой (ее верхними этажами) и другими геосферами.
Глобальные антропогенные воздействия в литосфере проявляются также, наряду с процессами эрозии, в усилении интенсивности и повторяемости неблагоприятных экзогенных процессов, таких как оседание и провалы на поверхности земли, оползни, оплывины и сели.
Оседания и провалы грунта. Разумеется, не все проседания вызваны действиями человека. Достаточно вспомнить карстовые и суффозионные воронки естественного происхождения. Однако действия человека, такие как откачка воды, нефти или других жидкостей, подземные выработки, уплотнение осадочных пород, протаивание мерзлых грунтов и многие другие делают эти явления чаще встречающимися и более интенсивными. Известны случаи провалов крупных сооружений, например жилых домов, сопровождавшихся человеческими жертвами.
Многолетние откачки воды для нужд местных жителей непосредственно под населенными пунктами приводят к постепенному, но зачастую значительному проседанию поверхности земли в городах. Откачки обычно не компенсируются притоком воды с поверхности в результате ее использования и протечками из водоразводящих систем. В результате в крупных городах, стоящих на осадочных породах, таких как Мехико, Бангкок, Токио и многих других, просадки распространяются на большие площади и достигают 8-10 м, а в отдельных случаях и больше. Москва также подвержена значительной опасности крупных осадок грунтов в результате неблагоприятных инженерно-геологических условий, осложняемых антропогенной деятельностью.
Города часто расположены на приустьевых равнинах, едва возвышающихся на уровнем моря, и проседание грунта на несколько метров вызывает необходимость защиты городских кварталов от затопления.
Оседание поверхности земли начинается с локальных очагов, но постепенно охватывает площади до 10–15 тыс. кв. км при понижении поверхности со скоростью до 20 см/год, достигая глубины 7–9 м.
Оседания грунта очень разнообразны как по причинам, так и по характеру их проявления. Всемирный ущерб может быть оценен миллиардами долларов ежегодно. Среди результатов – разрушенные плотины, испорченные железные и автомобильные дороги, ставшие ненадежными мосты, потрескавшиеся здания, деформированные оросительные каналы и т. п.
Обвалы и оползни – другая категория неблагоприятных явлений экзогенного происхождения. Устойчивость склонов зависит не только от конкретных инженерно-геологических и геоморфологических условий места, но также и от состояния природной среды большой территории, включающей проблемный участок. Соответственно, и методы предотвращения неприятной проблемы должны быть комбинацией локальных, конкретных решений в сочетании с более широкими, ландшафтоведческими подходами.
Сели требуют для своего возниковения в селевом бассейне комбинаций трех основных условий: достаточного количества рыхлого материала и воды при значительном уклоне. Частота и размеры селей в некоторой степени зависят от деятельности человека. Основной канал антропогенного воздействия – накопление рыхлого материала, доступного действию воды. Факторами усиления селеобразования может быть вырубка лесов, подрезка склонов дорогой, трубопроводом или другими инженерными сооружениями.
Стихийно-разрушительные процессы характерны для горных территорий. Они усиливаются в результате роста взаимодействия человека и природы. Например, во многих горных районах Средней Азии (Памиро-Алай, Тянь-Шань) частота разрушительных селей и снежных лавин увеличилась. Это связано не только с природными факторами, но и с ростом численности населения при ограниченности территорий, пригодных для жизни, что заставляет людей селиться на границах потенциально селеопасных зон. Таким образом, действует старая истина: «Опасность увеличивается, когда в горы приходит человек».
IX. Биосфера и ландшафты Земли: влияние деятельности человека
IX.1. Основные особенности биосферы и ее роль в экосфере
[12]
В научной литературе встречается разнозначное толкование понятий, обозначаемых словом «биосфера». Согласно одному, более широкому, биосфера – это область существования живого вещества. В этом смысле биосферу понимал В. И. Вернадский и в этом же смысле оно часто встречается в литературе, в особенности популярной. Понятие «биосфера» во многом совпадает с понятием или географической оболочки, или экосферы, и потому в таком смысле в этой книге не используется. В более узком смысле биосфера – одна из геосфер Земли. Это область распространения живого вещества, и именно в таком смысле мы рассматриваем биосферу.
Биосфера сконцентрирована в основном в виде относительно тонкой пленки на поверхности суши и преимущественно (но не исключительно) в верхних слоях океана. Она не может функционировать без тесного взаимодействия с атмосферой, гидросферой и литосферой, а педосфера без живых организмов просто не существовала бы.
Наличие биосферы отличает Землю от других планет Солнечной системы. Особо следует подчеркнуть, что именно биота, то есть совокупность живых организмов мира, создала экосферу в том виде, как она есть (или, точнее, какой она была до начала активной деятельности человека), и именно биота играет важнейшую роль в стабилизации экосферы. Кислородная атмосфера, глобальный круговорот воды и ключевая роль углерода и его соединений связаны с деятельностью биоты и характерны только для Земли. Биота играет значительную, если не определяющую, роль во всех глобальных биогеохимических циклах. В основном благодаря биоте обеспечивается гомеостазис экосферы, то есть способность системы поддерживать ее основные параметры, несмотря на внешние воздействия, как естественные, так и, в возрастающей степени, антропогенные.
Процесс фотосинтеза, то есть создания живого вещества из неживого, обеспечивает устойчивое образование важнейшего из природных ресурсов – первичной биологической продукции.
IX.2. Биотическое управление экосферой и ponü äеятелüности человека
Величина первичной биологической продукции – это общее количество органического вещества, создаваемого в ходе фотосинтеза за единицу времени (обычно за год) на определенной площади. Как правило, в литературе рассматривается «чистая» первичная биологическая продуктивность, представляющая общую биопродуктивность за вычетом расхода органического вещества на дыхание растений.
Величины биопродуктивности выражаются обычно или в массе органического вещества (в сухом состоянии), или в массе содержащегося в нем углерода. Средний коэффициент пересчета от массы органического вещества к массе углерода принимается равным 0,45, а чтобы получить величину массы органического вещества из массы углерода необходимо последнее умножить на 2,2. Удельные величины биологической продуктивности выражаются обычно в г/кв. м или в т/кв. км за год, а в российской литературе также и в центнерах с гектара за год.