Книга Красота физики. Постигая устройство природы, страница 46. Автор книги Фрэнк Вильчек

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Красота физики. Постигая устройство природы»

Cтраница 46

Эйнштейн ввел световые кванты, т. е. то, что мы сегодня называем фотонами, в 1905 г. – восемью годами ранее! Еще через восемь, в 1921-м, когда он получил Нобелевскую премию, в качестве основания для награды приводилась конкретно его работа по световым квантам. К тому времени она доказала свою ценность.


Что касается нашего второго парадокса, парадокса существования стабильных неизменных атомов, Нильс Бор предложил идею о том, что атомы могут пребывать только в стационарных состояниях. В классической механике возможно бесчисленное количество орбит, как мы видели на примере Горы Ньютона. Бор предположил, что в атоме электроны, удерживаемые электрическими силами, обращаются вокруг ядра, однако возможен только некоторый ограниченный набор орбит. Для простейшего атома – водорода – он предложил простое точное правило, определяющее возможные орбиты его электронов [59]. Когда электрон следует по одной из «разрешенных» орбит, мы говорим, что атом находится в стационарном состоянии. Электрон остается на этой конкретной орбите до тех пор, пока его не пнут слишком сильно, потому что другие возможные орбиты значительно отличаются от исходной, и легким толчком вам не удастся перебросить его! Наконец, атомы не коллапсируют оттого, что все разрешенные орбиты удерживают электроны на безопасном расстоянии от ядер.

Гипотеза стационарного состояния Бора также не была частью большой системы. На самом деле она тоже противоречила тому, что казалось очевидным следствием очень успешной теории, а именно – механики Ньютона. Кем был Бор, чтобы указывать электронам, где они могут, а где не могут быть или какие скорости они могут или не могут иметь? Это был скандал! Гипотеза объясняла некоторые факты, но ценой подрыва существующих и очень успешных основных принципов, которые объясняли многие другие явления.

Правило Бора для водорода могло быть и было проверено экспериментами. Их успех сделал его скандальную гипотезу достойной доверия.


И Эйнштейн, и Бор очень хорошо понимали, что они делают и чего не делают, выдвигая свои скандальные гипотезы. Они не предлагали последовательную «теорию всего» или даже некий большой синтез в духе небесной механики Ньютона или электромагнетизма Максвелла. Вернее будет сказать, что они, в духе поисков Пифагора, работы Ньютона о свете или Максвелла о восприятии, выявили поразительные совокупности фактов, которым в будущем могло найтись более глубокое объяснение.

Важная часть хорошей научной стратегии – это деление проблемных областей на те, из которых может вырасти большое обобщение, и на те, где более плодотворным будет конъюнктурный подход. Успешная теория чего-то может быть более ценной, чем попытка создания Теории Всего.

«Высшая форма музыкальности»

Атомы определенного вида – например, атомы водорода – поглощают одни цвета спектрального света более эффективно, чем другие. (Если говорить более обобщенно, они будут поглощать электромагнитные волны некоторых частот гораздо более эффективно, чем другие.) Те же самые атомы, если их «подогреть», будут испускать большую часть своего излучения в тех же самых спектральных цветах. Набор приоритетных цветов различен для атомов различных видов и формирует что-то вроде отпечатков пальцев, по которому мы можем распознать их. Набор приоритетных цветов атома называется его спектром.

В своей атомной модели Бор допустил, что электроны в атомах могут существовать только в дискретном наборе стационарных состояний. Таким образом, возможные значения энергии электронов также формируют дискретный набор. И вот как Бор связал свою идею с реальностью через еще одну скандальную гипотезу. Он предположил, что вдобавок к своим «разрешенным» регулярным движениям в стационарных состояниях электрон иногда совершает квантовый скачок между одним стационарным состоянием и другим. Почему? Как? Не спрашивайте… Важно, что процесс квантового скачка сопровождается излучением или поглощением фотона. Квантовые скачки создают атомные спектры.

В этой иконоборческой во всех других отношениях модели Бор не тронул один священный принцип – сохранение энергии. Он настаивал на том, что энергия должна сохраняться даже в процессе квантового скачка.

Итак, энергия фотона по Эйнштейну пропорциональна его частоте, а частота закодирована в цвете. А значит, идеи Бора образуют конструкцию с предсказательной силой: цвета спектра атома отражают его способности к переходу между стационарными состояниями, при этом указывая на величину разностей между энергиями стационарных состояний. Модель Бора, предсказывая эти энергии, предсказала цвета в спектре водорода. И это сработало!

Эйнштейн, размышляя о работе Бора, писал:

Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточно, чтобы позволить Бору – человеку с гениальной интуицией и тонким чутьем – найти главные законы спектральных линий и электронных оболочек атомов… Это мне кажется чудом и теперь. Это наивысшая музыкальность в области мысли [60].

Однако Эйнштейн в данном случае был не прав. Самая лучшая музыка все еще была впереди.

Новая квантовая теория: атомы как музыкальные инструменты

Успех Бора оставил теоретикам проблему объяснения его постулатов «от достигнутого». Его модель обеспечила описание атомов в виде «черного ящика», где говорится, «что» они делают, но не говорится «как». Набрасывая ответ на неизвестный вопрос, Бор положил начало великой игре «Jeopardy!» («Рискуй!») [61] Физики должны были теперь найти те уравнения, для которых модель Бора являлась решением.

После героических битв, после продолжавшихся больше десяти лет усилий и споров ответ был найден. Он устоял до сего дня, и его корни уходят так глубоко, что, кажется, его никто и никогда не сумеет оспорить.

Что такое квантовая теория?

При описании поведения вещества в атомном и субатомном масштабе выяснилось, что требуется не только добавлять новое к тому, что было известно раньше, но также создавать полностью отличающийся понятийный аппарат, в котором многие идеи, считавшиеся незыблемыми, подлежали пересмотру. Такой аппарат, получивший известность как квантовая теория или квантовая механика, был по большей части готов к концу 1930-х гг. С этого времени наши методы решения математических задач, которые ставила квантовая теория, значительно улучшились, и мы добились гораздо более детального и глубокого понимания основных сил Природы, как мы увидим в следующих главах. Но это развитие происходило уже внутри рамок квантовой теории.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация