Вспомним, что, разработав в 1905 г. специальную теорию относительности, Эйнштейн вскоре осознал, что ее невозможно совместить с теорией гравитации Ньютона. Он бился над этой проблемой целых десять лет, назвав их «годами тревожного поиска во тьме».
Эйнштейн достиг просветления, обнаружив подходящие уравнения для кривизны пространства-времени, и тем самым завершил новую теорию гравитации, общую теорию относительности. Он открыл их, когда сформулировал следующее требование: уравнения должны воплощать то, что он назвал общей ковариантностью, которая является вариантом локальной симметрии для пространства – времени.
Чтобы глубже понять локальную симметрию Главной теории, давайте начнем с того, что вспомним основную идею симметрии уравнений, которую мы ввели ранее в наших дискуссиях вокруг уравнений Максвелла. Мы говорим, что уравнение (или система уравнений) имеет симметрию, если существуют такие изменения, которые можно произвести над входящими в уравнение величинами, не изменив его содержания. Требование симметрии предоставляет нам способ нахождения особенных уравнений, поскольку большинство уравнений, выбранных случайно, не симметричны. Также, если говорить субъективно, это способ нахождения особенно красивых уравнений.
(Некоторые считают, что использование слова «симметрия» для описания свойства уравнения режет слух, поскольку оно кажется довольно далеким от обыденного значения этого слова. Если у вас есть такое затруднение, возможно, вам стоит иметь в виду слово «инвариантность» как дополнение или замену. После некоторого обдумывания я решил придерживаться слова «симметрия», так как оно глубоко укоренилось в литературе и это не осталось без отклика. Как бы вы это ни называли, главной идеей остается Изменение без изменений.)
Общепринятая, т. е. нелокальная, или (слово, которое буду использовать я) глобальная, симметрия физических законов обычно предполагает изменение Вселенной в целом, жестко и глобально. Например, мы постулируем, что содержание законов физики не изменится, если мы изменим положение всего, что в них встречается, на одну и ту же величину – скажем, сдвинем все на метр в одном и том же направлении, везде (и во все моменты времени). Если хорошо подумать об этом, вы поймете, что это точный (хотя возможно странный) способ сказать, что законы не знают предпочтительного положения в пространстве или, проще говоря, что законы везде принимают одну и ту же форму. Но, если мы поменяем положение некоторых предметов на бóльшую величину, чем положение других, мы изменим их взаимное расположение. Это, несомненно, поменяет содержание законов о силах – например, закон Ньютона для гравитации и похожий на него закон Кулона для электрических сил, – которые зависят от расстояний между объектами.
С локальной симметрией появляются преобразования, меняющиеся в пространстве и времени. Именно потому, что мы можем выбирать преобразования локально, не заботясь о Вселенной в целом, мы используем слово «локальная» при описании такой возможности. Рассмотрим снова вид трансформации, который мы только что обсудили в предыдущем абзаце: простой сдвиг всех объектов. На первый взгляд, как мы видели, симметрия законов физики может иметь место только в том случае, если мы предполагаем перемещение всего на одинаковое расстояние в одном и том же направлении. Если мы изменим расстояния между объектами, мы изменим законы их взаимодействия! Однако – а в этом как раз и заключается йога локальной симметрии – если у нас имеется метрический флюид и мы внесем нужные поправки в метрический флюид одновременно с перемещениями, то мы сможем сохранить расстояния между объектами и, следовательно, законы их взаимодействия неизменными!
Анаморфное искусство, как показано на вклейке EE, служит прекрасной метафорой – или, лучше сказать, моделью – для локальной симметрии. Как мы обсуждали ранее, начертательная/проективная геометрия – это искусство/наука об Изменениях без изменений, с которым (-ой) сталкиваешься, смотря на один и тот же объект (нет изменения) с разных точек зрения (изменения). Мы признаем, что многие различные картины могут изображать один и тот же предмет. Но мы можем получить более сложные образы, используя все тот же изначальный объект, если допустим присутствие искажающих сред – кривых зеркал, скажем, или линз и призм… или вообще некой структуры, которая меняется в пространстве от места к месту и искривляет световые лучи. Допуская присутствие таких сред, мы начинаем считать, что гораздо более широкий спектр изображений представляет один и тот же объект. Локальная симметрия – это та же самая идея, только примененная к уравнениям вместо предметов.
Условие локальной симметрии накладывает жесткие ограничения на наши уравнения. Мы требуем, чтобы версии этих уравнений, выглядящие очень искаженными, имели такие же следствия, как и оригиналы. Чтобы это было возможно, мы должны сделать предположение о том, что пространство-время (включая и любые пространства свойств, наложенные на него) заполнено соответствующими флюидами. В зависимости от того, как вы хотите интерпретировать эту ситуацию, вы можете сказать, что флюиды ответственны за видимые искажения или – альтернативно – компенсируют их. (Они ответственны за видимые искажения, если вы трактуете все от объекта к восприятию; они компенсируют видимые искажения, если вы трактуете все от восприятия к объекту!) В любом случае нам нужны эти заполняющие пространство-время флюиды, если мы хотим иметь локальную симметрию. И если мы хотим, чтобы они были успешными универсальными компенсаторами, флюиды должны обладать весьма особенными свойствами. Другими словами, они должны будут подчиняться очень специальным уравнениям.
Именно требование локальной версии специальной теории относительности позволило Эйнштейну получить уравнения для метрического поля, являющиеся основой общей теории относительности! И именно требование локальных версий вращений в пространствах свойств позволило Чжэньнину Янгу и Роберту Миллсу найти уравнения, носящие их имена и управляющие слабым и сильным флюидами. Янг и Миллс основывались на работе Германа Вейля, который показал, что уравнения Максвелла для электромагнитного флюида можно вывести таким образом.
Когда мы переходим от флюидов к соответствующим им субатомным частицам, или квантам, мы осознаем, что существование гравитонов, фотонов, виконов и цветных глюонов – квантов метрического, электромагнитного, сильного и слабого флюидов соответственно – и их свойств является неизбежным и исключительным следствием различных локальных симметрий. Обычный жаргон для этих локальных симметрий в физической литературе таков:
• общая ковариантность – для локальной версии специальной теории относительности;
• калибровочная симметрия U (1) – для локальной версии вращения в пространстве свойств электрического заряда;
• калибровочная симметрия SU (2) – для локальной версии вращения в пространстве свойств слабого заряда;
• калибровочная симметрия SU (3) – для локальной версии вращения в пространстве свойств сильного заряда.
Историческое происхождение термина «калибровочная симметрия» довольно интересно. Оно обсуждается в примечаниях в конце книги.