«…Я начал размышлять о притяжении, простирающемся до орбиты Луны и дальше (обнаружив, как оценить силу, с которой шар вращается внутри сферы и оказывает давление на поверхность сферы). Из закона Кеплера, согласно которому периоды обращения планет вокруг Солнца находятся в пропорции 3:2 с расстоянием от центров их орбит, я вывел, что сила, удерживающая планеты на их орбитах, должна аналогично соотноситься с квадратами расстояний от центра, вокруг которого они вращаются, с помощью этого сравнил Луну на ее орбите с силой притяжения на поверхности Земли и нашел, что они подходят очень хорошо. Все это [в том числе его работы по бесконечно малым числам и математическому анализу] было сделано за два “чумных” года, 1665 и 1666 гг. В те дни я был в расцвете моей эры изобретений и размышлял о математике и философии более чем когда-либо…»
{256}
Как я уже сказал, эти высказывания требуют некоторых разъяснений.
Во-первых, слова, которые Ньютон взял в скобки: «обнаружив, как оценить силу, с которой шар вращается внутри сферы и оказывает давление на поверхность сферы», относятся к расчету центробежной силы, который к тому времени уже был проведен Гюйгенсом – примерно в 1659 г. (возможно, Ньютон об этом не знал). Для Гюйгенса и Ньютона (как и для нас) ускорение имело более широкое определение, чем просто число, выражающее изменение скорости за прошедшее время; это имеющее направление количество, показывающее как изменение скорости за прошедшее время в определенном направлении, так и модуль скорости. При движении по окружности ускорение присутствует даже при постоянной скорости – это центростремительное ускорение, которое складывается из постоянного поворота в сторону центра окружности. Гюйгенс и Ньютон пришли к заключению, что тело, движущееся с постоянной скоростью v по окружности радиусом r, обладает ускорением v²/r в сторону центра окружности, поэтому сила, необходимая для того, чтобы оно удерживалось на этой окружности и не улетало по прямой в окружающее пространство, должна быть пропорциональна v²/r (см. техническое замечание 32). Сопротивление центростремительному ускорению Гюйгенс назвал «центробежной силой», которую тело испытывает, когда его раскручивают на конце веревки по кругу. Для этого тела сопротивление обеспечивается центробежной силой, которая проявляется в натяжении веревки. Но планеты не привязаны веревками к Солнцу. Что же тогда противостоит центробежной силе, испытываемой планетами при практически круговом движении вокруг Солнца? Как мы увидим далее, ответ на этот вопрос привел Ньютона к открытию обратной пропорции квадратов в законе тяготения.
Далее, в словах «из закона Кеплера, согласно которому периоды обращения планет вокруг Солнца соотносятся в пропорции 3:2 с расстоянием до центра их орбит» Ньютон говорит о Третьем законе Кеплера (как мы его сегодня называем) – квадраты периодов обращения планет вокруг Солнца относятся как кубы средних радиусов их орбит, или, другими словами, о том, что периоды пропорциональны степени 3/2 («пропорция 3:2») средних радиусов орбит
{257}. Период вращения тела со скоростью v по окружности радиусом r равен длине окружности 2πr, деленной на скорость v, поэтому для круговых орбит Третий закон Кеплера гласит, что отношение r² / v² пропорционально r³, следовательно, их обратное отношение v²/r² пропорционально 1/r³. Из этого следует, что сила, удерживающая планеты на их орбитах, пропорциональная v²/r, должна быть пропорциональна 1/r². Это и есть закон обратной пропорции квадратов в законе тяготения.
Само по себе это можно рассматривать просто как способ переформулировать Третий закон Кеплера. В рассуждениях Ньютона о планетах ничто не указывало на связь между силой, удерживающей планеты на их орбитах, и общеизвестными явлениями, связанными с силой тяготения на поверхности Земли. Эта связь появляется после того, как Ньютон начинает рассуждать о Луне. Утверждение Ньютона о том, что он «сравнил Луну на ее орбите с силой притяжения на поверхности Земли и нашел, что они подходят очень хорошо», указывает на то, что он рассчитал центростремительное ускорение Луны и нашел, что оно меньше ускорения свободного падения тел вблизи поверхности Земли в том самом соотношении, которого можно ожидать, если оба эти ускорения обратно пропорциональны квадрату расстояния от центра Земли.
Если быть точнее, Ньютон взял радиус орбиты Луны (хорошо известный по измерению суточного параллакса Луны), равный 60 земным радиусам; в действительности он составляет около 60,2 земных радиуса. Он использовал грубое округление значения радиуса Земли
{258}, в результате чего получилось весьма приблизительное значение радиуса орбиты Луны, и, зная, что сидерический период обращения Луны вокруг Земли составляет примерно 27,3 суток, он смог оценить скорость Луны и из нее вывести центростремительное ускорение. Это ускорение оказалось меньше ускорения свободного падения у поверхности Земли на показатель, приближенно (очень приближенно) равный 1/(60)², чего и можно было ожидать, если считать силу, удерживающую Луну на ее орбите, той же, что притягивает тела к земной поверхности, лишь уменьшенной в соответствии с законом обратных квадратов (см. техническое замечание 33). Именно это Ньютон имел в виду, когда говорил о двух силах, что «нашел, что они подходят очень хорошо».
Это был кульминационный шаг в объединении земного и небесного в науке. Коперник поместил Землю среди других планет, тогда как Тихо Браге показал, что в небесах происходят изменения, а Галилей увидел, что поверхность Луны неровная, как и поверхность Земли, но ни одно из этих нововведений не связывало движение планет с силами, которые можно наблюдать на Земле. Декарт пытался понять движение тел в Солнечной системе как результат взаимодействия вихрей в эфире, сравнивая их с вихрями в луже воды на Земле, но его теория не имела успеха. Теперь же Ньютон показал, что сила, которая удерживает Луну на орбите вокруг Земли и планеты на их орбитах вокруг Солнца, – это та же самая сила притяжения, которая заставляет яблоко падать на землю Линкольншира и имеет те же самые количественные характеристики. После этого открытия о разграничении между небесным и земным, которое начиная со времен Аристотеля сдерживало развитие физики, пришлось навсегда забыть. Но от этого открытия все еще было далеко до Закона всемирного тяготения, который гласит, что любое тело во Вселенной, а не только Земля и Солнце, притягивает любое другое тело с силой, обратно пропорциональной квадрату расстояния между ними.