Книга Объясняя мир. Истоки современной науки, страница 76. Автор книги Стивен Вайнберг

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Объясняя мир. Истоки современной науки»

Cтраница 76

В Общей теории относительности гравитационное поле может быть полностью описано определением для каждой точки в пространстве и времени инерциальной системы отсчета, в которой воздействие притяжения отсутствует. Математически это похоже на то, как если бы мы составляли карту небольшого района любого участка неплоской поверхности, которая выглядит плоской, – например, карту города на поверхности Земли. Искривление поверхности может быть описано путем составления атласа наложенных друг на друга местных карт. На самом деле это математическое сходство позволяет нам описать любое гравитационное поле как изгиб пространства и времени.

Таким образом, понятийная основа Общей теории относительности отличается от теории Ньютона. Во многих случаях в общей относительности понятие гравитационного поля замещается концепцией искривленного пространства-времени. Некоторым людям было трудно это воспринять. В 1730 г. Александр Поуп написал памятную эпитафию Ньютону:

Был этот мир глубокой мглой окутан,
«Да будет свет!» – И вот явился Ньютон.

В XX в. английский поэт-сатирик Дж. С. Сквайр добавил еще две строчки:

Но сатана недолго ждал реванша.
Пришел Эйнштейн – и стало все, как раньше {280}.

Не верьте этому. Общая теория относительности во многом соответствует духу теорий движения и притяжения Ньютона: она основана на общих принципах, которые могут быть выражены уравнениями, следствия которых выводятся математически, применимы к широкому спектру явлений и подтверждаются наблюдениями. Разница между теориями Эйнштейна и Ньютона намного меньше, чем разница между теорией Ньютона и тем, что было сделано до него.

Остается один вопрос: почему научная революция XVI и XVII вв. произошла именно в то время и в том месте? Объяснений этому предостаточно. В XV в. в Европе произошло множество изменений, которые подготовили основание для научной революции. Появились централизованные государства: во Франции – при правлении Карла VII и Людовика XI, в Англии – при Генрихе VII. Падение Константинополя в 1453 г. заставило греческих ученых искать пристанище на западе – в Италии и дальше. Возрождение повысило интерес к изучению мира природы, что привело к появлению высоких требований к точности древних текстов и их переводов. Изобретение печатного станка с наборным шрифтом сделало общение ученых более простым и дешевым. Открытие и изучение Америки укрепили уверенность в том, что древние многого не знали. К тому же в соответствии с исследованиями Мертона протестантская Реформация начала XVI в. подготовила почву для великих научных прорывов в Англии XVII в. Социолог Роберт Мертон предполагал, что протестантизм создал социальные отношения, благоприятные для науки, а также своеобразную смесь рационализма с эмпиризмом и верой в законы природы, которые поддаются пониманию, – он сумел вычленить эти качества в работе ученых-протестантов {281}.

Трудно судить, насколько важным оказалось влияние внешних факторов на научную революцию. Но, хотя я не могу сказать, почему в Англии конца XVII в. Исаак Ньютон открыл классические законы механики и притяжения, я думаю, что знаю, почему эти законы приобрели ту форму, какую они имеют. Это весьма просто – с очень хорошим приближением мир следует законам Ньютона.


Завершив обзор истории физической науки от Фалеса до Ньютона, я бы хотел поделиться некоторыми осторожными мыслями о том, что привело нас к современной концепции науки, которую представляют достижения Ньютона и его последователей. В древние времена или Средневековье никто даже не думал о том, что построение чего-то напоминающего современную науку может быть целью. На самом деле, если бы наши предки могли только представить, какой будет наука в наши дни, возможно, это им совсем бы не понравилось. Современная наука обезличена, в ней нет места сверхъестественному вмешательству и (не считая бихевиористики) человеческим ценностям. В ней нет никакого понятия цели и смысла, и она не оставляет никакой надежды на определенность. Так как же мы пришли к этому?

Сталкиваясь со ставящими в тупик явлениями окружающего мира, в любой культуре люди пытались найти им объяснение. Даже когда они отказывались от мифологии, большая часть попыток что-либо объяснить не приводила ни к чему мало-мальски убедительному. Фалес пытался понять, что такое материя, предположив, что она является водой, но что он мог сделать с этой идеей? Какую новую информацию она ему дала? Никто в Милете или где-либо еще не мог вывести что-либо из мысли о том, что все вокруг – вода.

Но время от времени кому-нибудь удавалось найти способ объяснить какое-либо явление. Найденное им объяснение так хорошо подходило к этому явлению и проясняло так много, что награждало нашедшего чувством глубокого удовлетворения, особенно когда понимание можно было выразить количественно и наблюдения хорошо подтверждали его. Представьте себе, что должен был почувствовать Птолемей, когда, добавив эквант к эпициклам и эксцентрикам Аполлония и Гиппарха, он получил теорию движения планет, которая позволила предсказать с достаточной точностью, где на небе можно будет найти планету в любой момент. Мы можем понять охватившую его радость из строк, которые я уже цитировал ранее: «…когда я в мыслях неустанно и жадно прослеживаю пути светил, тогда я не касаюсь ногами земли: на пиру Зевса наслаждаюсь амброзией – пищей богов» {282}.

Но радость была с изъяном – как всегда. Не нужно быть последователем Аристотеля, чтобы озадачиться странными петлеобразными движениями планет по эпициклам в теории Птолемея. Также в ней имела место чудовищная подгонка данных: требовался ровно один год для одного оборота центров эпициклов Меркурия и Венеры вокруг Земли, а Марсу, Юпитеру и Сатурну – для одного оборота вокруг своих эпициклов. Более тысячи лет философы спорили о том, какова же на самом деле была роль таких астрономов, как Птолемей: действительно ли он понял небесное движение или просто подогнал данные?

Какое удовлетворение должен был почувствовать Коперник, когда смог объяснить, что вся подгонка и петлеобразные орбиты в схеме Птолемея появились из-за того, что мы смотрим на Солнечную систему с движущейся Земли. Все еще с изъяном, теория Коперника не полностью совпадала с данными наблюдений без введения чудовищных усложнений. Как же должен был наслаждаться математически одаренный Кеплер, заменив беспорядок Коперника движением по эллипсам, которое объясняли его три закона!

Таким образом, мир обучал нас, подкрепляя наши хорошие идеи моментами удовлетворения. Спустя века мы поняли, как можем исследовать окружающий мир. Мы научились не волноваться о цели мироздания, потому что стремление к его пониманию никогда не приводило к той радости, которая нам была нужна. Мы научились отказываться от полной определенности, потому что объяснения, которые делали нас счастливыми, никогда не были окончательными и определенными. Мы научились проводить эксперименты, не беспокоясь об искусственности наших построений. Мы развили эстетическое чувство, позволяющее предугадывать, какие теории могут работать, и оно добавляет нам удовлетворения, когда наши теории начинают работать. Элементы нашего понимания суммируются. Это процесс, который нельзя запланировать или предсказать, но его результат – надежные знания и, попутно, радость открытий, которой мы наслаждаемся.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация