У человека и других млекопитающих, некоторых видов насекомых (например, у плодовой мушки дрозофилы или водяного клопа Ligaeus) пол определяется X и Y-хромосомами. Самки гомогаметны и имеют набор из двух парных ХХ-хромосом, а у самцов половые хромосомы непарные XY. У многих видов млекопитающих, включая человека, развитие мужского пола детерминировано присутствием специфической области на Y-хромосоме, получившей название SRY. Однако даже среди млекопитающих есть исключение из этого правила. Недавно было показано, что два вида кротов утратили Y-хромосому и прекрасно без нее обходятся. У одного из них оба пола имеют только одну непарную Х-хромосому, а у другого, напротив, оба пола имеют набор из двух Х-хромосом. Другой тип определения пола встречается у некоторых бабочек, червей и водяного клопа Protenor. Для самцов в этом случае типично наличие ХО-хромосом, а для самок XX.
Пол, впрочем, не всегда определяется системой XY. У птиц, некоторых бабочек и земноводных половая принадлежность детерминирована системой ZW. В этом случае ситуация с парными хромосомами прямо противоположна той, которая описана у млекопитающих — гетерогаметным (т. е., обладающим разными половыми хромосомами) является женский пол. Самцы имеют парный набор ZZ-хромосом, а у самок половые хромосомы непарные — ZW или ZO.
Соотношение половых хромосом и аутосом как фактор определения пола
Ученые уже в первой половине XX века активно обсуждали вопрос о том, что же лежит в основе определения пола. Широкую известность получила балансовая теория К. Бриджеса. По мнению американского генетика, не присутствие двух Х-хромосом определяет женский пол, и не наличие Y-хромосомы определяет мужской пол. Решающим для определения пола оказывается баланс между числом половых хромосом и набором аутосом. Проводя эксперименты с дрозофилами, К. Бриджес обнаружил, что особи с триплоидным набором хромосом (ЗХ : ЗА) были самками, как и обычные диплоидные самки (2Х: 2А). Самками оказались также и мушки с набором хромосом (2Х + Y) : 2А. Во всех трех вариантах отношение числа Х-хромосом к числу аутосом было равно 1. Наличие мужской Y-хромосомы не повлияло на нормальное развитие самки. Дрозофилы с хромосомным набором XY: 2Абыли нормальными самцами (отношение числа Х-хромосом к числу аутосом составляет 0,5). А мушки, у которых отношение числа Х-хромосом к числу аутосом варьировало между 0,5 и 1 (варианты: 2Х : ЗА; (2Х + Y): ЗА) сочетали в своей морфологии мужские и женские черты. В случае, когда число наборов аутосом увеличивалось до трех, при наличии одной Х-хромосомы, происходило развитие сверхсамца. Такой организм обладал гипертрофированными признаками мужского пола, но при этом был стерильным. Аналогичным образом, увеличение числа Х-хромосом при диплоидном наборе аутосом (ЗХ : 2А) приводило к формированию сверхсамки, с выраженными нарушениями репродуктивной функции.
У человека и других млекопитающих балансовая теория пола не работает. Ключевую роль в этом случае играет Y-хромосома. Если таковая отсутствует, то при любом числе Х-хромосом формируется женская особь. В присутствии же Y-хромосомы, даже при наличии трех и четырех Х-хромосом формируется мужская особь.
Y-хромосома обладает целым набором специфических черт. Она содержит в себе гораздо меньше генов по сравнению с другими хромосомами и богата повторяющимися блоками нуклеотидов и гетерохроматиновыми районами. На У-хромосоме имеется область гомологичная с Х-хромосомой, называемая псевдоаутосомной областью. Кроме того, значительная часть генов на Y-хромосоме имеет аналоги на Х-хромосоме. Это касается также и генов, связанных с определением пола (SOX3/SRY, SMCX/SMCY, ZFX/ZFY и др.).
Y-хромосома составляет лишь около 2-3% гаплоидного генома. Однако у человека кодирующей способности ее ДНК хватило бы на несколько тысяч генов. В реальности объем генетических функций Y-хромосомы не слишком велик. У мышей ее фенотипическое влияние ограничено весом семенников, секрецией тестостерона и серологического Н-У-антигена, чувствительностью органов к андрогенам и сексуальным поведением. По словам известного отечественного специалиста в области генетики индивидуального развития члена-корреспондента РАН Л. И. Корочки на Y-хромосома — единственная хромосома в геноме млекопитающих, которая не работает непосредственно на реализацию фенотипа. Ее значимость состоит лишь в контроле гаметогенеза и первичной детерминации пола.
Молекулярно-генетические основы детерминации пола млекопитающих
Бурно развивающиеся в последние десятилетия исследования в области молекулярной генетики существенным образом расширили наши представления о молекулярно-генетических основах детерминации пола млекопитающих. Стало очевидным, что половая дифференцировка происходит в соответствии с двумя правилами. Первое правило, сформулированное в 60-е годы XX века А. Жостом, выглядит следующим образом: специализация развивающихся гонад в семенники или яичники определяет последующую дифференцировку эмбриона. Происходит это по той причине, что семенники секретируют тестостерон — фактор, ответственный за маскулинизацию плода. Вторым фактором выступает анти мюллеровский гормон, контролирующий непосредственно анатомические преобразования. Второе правило определения пола у млекопитающих: Y-хромосома несет генетическую информацию, необходимую для детерминации пола у самцов.
Комбинацию из этих двух правил генетики называют принципом Жоста. Суть его сводится к следующему: хромосомное определение пола, связанное с наличием или отсутствием Y-хромосомы, детерминирует дифференциацию эмбриональной гонады. Эмбриональная гонада, в свою очередь, контролирует фенотипический пол организма. Такой механизм определения пола называют генетическим. Ведущую роль в определении пола у других животных могут играть факторы внешней среды (например, температура) или соотношение половых хромосом и аутосом, как было показано выше для дрозофилы.
У млекопитающих на ранней стадии эмбрионального развития происходит бисексуальная закладка гонад. Таким образом, в протогонадах исходно присутствуют зачатки половых путей самок и самцов. Первичная детерминация пола самцов связана с появлением в таких протогонадах особых клеток Сертоли. В клетках Сертоли секретируется антимюллеровский гормон, ответственный за подавление развития мюллерового протока (зачаток фаллопиевых труб и матки). Функционирование клеток Сертоли связано с работой особого гена SRY, расположенного в детерминирующей пол области Y-хромосомы. Ген SRY содержит особый участок (HMG-бокс), мутации которого могут вести к инверсии пола.
Рис. 2.1. Диаграмма, демонстрирующая возможные функции генов, участвующих в детерминации пода у млекопитающих: SRY, Sox9, АМН, WT-1 ,SF-1, DAX-1. (Дано по Л. И. Корочки ну. 2002).
Следует сказать, что процесс детерминации пола контролируется генетически на многих уровнях. Помимо гена SRY в детерминации пола у млекопитающих принимают участие и другие гены, расположенные как в X и Y-хромосомах, так и в аутосомах. К ним относятся гены: Gpy (контролирует скорость роста эмбрионов и прогонад); Sox9 (ответственен за аутосомальную инверсию пола); Z (отрицательный регулятор развития семенников, активен у самок и заблокирован у самцов работой SRY); M1S (ген антимюллеровского гормона, у человека локализован на 19-й хромосоме); Tfm (ген рецептора андрогенов, у человека локализован на Х-хромосоме), АМН, WTI, DAX-1 (Рис. 2.1).