Книга Семь элементов, которые изменили мир, страница 57. Автор книги Джон Браун

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Семь элементов, которые изменили мир»

Cтраница 57

Александр-Эдмон Беккерель, отец Анри Беккереля (прославившегося открытием радиации), обнаружил фотоэлектрический эффект в 1839 г. [57]. Беккерель помещал две латунные пластины в электропроводящий раствор и освещал его солнечным светом. Оказалось, что свет вызывает движение электрического тока в растворе между пластинами. Если можно использовать этот ток, значит, можно использовать и энергию солнца. Однако и через 100 лет ученые с помощью фотоэлементов могли уловить всего лишь одну двухсотую долю энергии Солнца.

Это не обеспечивало достаточной мощности для нужд Чейпина, и поэтому он занялся поиском вариантов. Слух об исследованиях Чейпина дошел до Джеральда Пирсона и Калвина Фуллера, также ученых из Белловских лабораторий, экспериментировавших с необычными электрическими свойствами кремниевых полупроводников. Они подумали: разрабатываемые новые материалы могли бы оказаться полезны для создания фотоэлектрических элементов. К всеобщему удивлению, идея не только оказалась правильной, но и позволила создать фотоэлектрический элемент, в пять раз превосходивший все существовавшие до сих пор [58].

В апреле 1954 г. Пирсон и Фуллер объявили о создании «Белловской солнечной батареи» и продемонстрировали журналистам, как она обеспечивает работу радиопередатчика. Новая батарея быстро доказала свою ценность в качестве надежного источника электропитания в тропических условиях. Однако настоящее признание солнечные батареи получили в 1958 г., будучи использованы в космической программе American Vanguard. В то время как химические батареи космического зонда быстро сели, солнечные батареи продолжали работать в течение нескольких лет полета. В космических аппаратах солнечные батареи получили первое широкое применение [59].

Даже сегодня солнечные батареи часто оказываются самым рентабельным средством генерирования энергии в удаленных областях, лишенных других источников энергии, поскольку позволяют избегать больших затрат на строительство линий электропередачи и подвозку топлива. Они могут монтироваться в виде изолированных энергетических установок. В 2001 г. я посетил Индонезию, чтобы познакомиться с тем, как BP реализует в сельском районе один из самых крупных на тот момент во всем мире проектов по преобразованию солнечной энергии в электрическую. Небольшие панели из кремниевых фотоэлементов были установлены на 40 000 деревенских домов. Электрические насосы теперь использовались для полива полей, а электрическое освещение провели в дома, школы и медицинские учреждения. Солнечные батареи также положительно повлияли на образовательный процесс. Как я заметил, дети стали учиться не только днем, но и вечером.

В отличие от ископаемых видов топлива, рассредоточенных в недрах земли, солнце светит повсюду. В течение года от солнца на землю поступает больше энергии, чем может быть получено из всех месторождений каменного угля, нефти, природного газа и урана. Энергия, получаемая в течение одного дня, в 130 000 раз превышает общемировую потребность в электроэнергии. И при этом доля солнечной энергии в производстве электроэнергии составляет лишь десятые доли процента. Отчасти это обусловлено тем, что использование солнечной энергии печально знаменито низкой эффективностью. Слабый электрический ток возникает каждый раз, когда фотон поглощается кремниевым фотоэлементом. Это происходит потому, что в фотоэлементе энергия фотона передается электрону и его положительному антиподу, называемому «дыркой» [60]. Энергия фотона передается при поглощении, но в действительности поглощаются далеко не все фотоны. Чтобы произошло поглощение, фотон должен обладать достаточной энергией, а она есть лишь у малого процента фотонов. В результате даже в самых благоприятных лабораторных условиях солнечные фотоэлементы захватывают и преобразуют в электричество лишь 40 % падающего света. В фотоэлементах, используемых в обычных рабочих условиях, этот показатель составляет от 10 до 20 %. Это все равно делает их в несколько раз более эффективными, чем первые солнечные фотоэлементы, созданные в Белловских лабораториях в 1954 г. Улучшение, достигнутое в течение всего 60 лет, удивительно: ведь за миллиарды лет эволюции растения, преобразующие свет в энергию с помощью фотосинтеза, достигли эффективности преобразования всего в 3 %.

Однако самое большое препятствие к успеху солнечных фотоэлементов имеет не техническую, а экономическую природу: солнечные батареи производят дорогую электроэнергию, потому что их изготовление стоит больших денег. Ситуация начала улучшаться, по мере того как стали появляться новые технологии изготовления фотоэлементов. Стоимость производства также быстро пошла вниз во многом благодаря экономии от эффекта масштаба, достигаемой китайскими производителями на растущем китайском рынке. Несмотря на это, электричество, полученное с помощью солнечных фотоэлементов, не сравнялось по цене с сетевым. Ведь только в этом случае фотоэлементы смогут конкурировать с невозобновляемыми источниками энергии. Но этот момент становится все ближе. Производится все больше солнечных фотоэлементов, и они продолжают дешеветь; в 2011 г. производственные мощности предприятий, изготавливающих солнечные фотоэлементы, увеличились почти на 75 %, при том что средний рост в этой отрасли за последнее десятилетие составлял 45 %. Продолжающееся развитие будет иметь важное значение для перехода к экономике, использующей меньше энергии углерода [61].

Когда в 1954 г. появилось сообщение об изобретении в Белловских лабораториях кремниевых солнечных фотоэлементов, New York Times написала: это событие ознаменовало «начало новой эры, которая в итоге позволит реализовать давнюю мечту человечества об использовании практически неограниченной энергии солнца на благо цивилизации» [62]. Эта мечта может стать реальностью, и человечество сумеет избавиться от эмиссии парниковых газов. Но предстоит пройти еще долгий путь, прежде чем масштаб использования солнечной энергии станет сопоставим с масштабом использования энергии ископаемых видов топлива или атомного ядра. Однако из всех возобновляемых источников энергии оно выглядит на сегодня самым перспективным.

Компьютеры

Анкоридж, Аляска, 1970 г.: красные лампочки отчаянно мигают на панели управления. Только что сломалось устройство памяти компьютера на магнитных сердечниках. В те времена такая поломка была чисто механической: вращающиеся диски начинали цепляться друг за друга и в конце концов останавливались. Постоянные перезапуски компьютера делали выполнение даже простейшей программы крайне трудным. Мне предстояла долгая непростая ночь жесточайшего цейтнота. Я работал на первой инженерной должности в British Petroleum. Благодаря знаниям, полученным в Кембриджском университете, я был в те дни одним из немногих, знавших, как облегчить решение инженерных задач с помощью компьютера. Мой босс собирался на встречу с очень влиятельными людьми из нескольких еще более влиятельных американских нефтяных компаний. Они намеревались обсудить перспективы совместного освоения гигантского нефтяного месторождения Прюдо Бэй. Он хотел, чтобы я нашел ответ на некий важный вопрос и чтобы он, представлявший в то время довольно небольшую компанию, сумел произвести впечатление своей технической подготовленностью на другие, более крупные компании.

Непростая задача. Компании имели договоры аренды на разные участки земли на поверхности месторождения. Таким образом, то, чем владела каждая компания, в значительной мере зависело от распределения нефти на этой территории, очень, как оказалось, неравномерного. Во время раннего завтрака после бессонной ночи мне в голову неожиданно пришло нужное решение, и я отправился в офис. Да, работа по ночам иногда приносит пользу.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация