Онлайн книга «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики»
2006 | Патрик Виера, Зинедин Зидан (Франция), 23 июня |
2002 | Никого |
1998 | Эммануэль Пети (Франция), Рональдо (Бразилия), 22 сентября |
1994 | Франко Барези (Италия), Клаудио Таффарель (Бразилия), 8 мая |
1990 | Никого |
1986 | Серхио Батиста (Аргентина), Андреас Бреме (Западная Германия), 9 ноября |
1982 | Никого |
1978 | Рене ван де Керкхоф, Вилли ван де Керкхоф (Голландия), 16 сентября; Джонни Реп, Ян Йонгблед (Голландия), 25 ноября |
1974 | Джонни Реп, Ян Йонгблед (Голландия), 25 ноября |
1970 | Пьацца (Бразилия), Пьерлуиджи Чера (Италия), 25 февраля |
С первого взгляда это воспринимается как удивительный набор совпадений, однако с точки зрения математики в этом списке нет ничего выдающегося, потому что стоит только случайно выбрать группу из 23 человек, как окажется, что совпадение дней рождения у двух людей в группе будет более вероятным, чем отсутствие таких совпадений. Это явление известно как парадокс дней рождения. В нем нет никаких противоречий, однако же он бросает вызов здравому смыслу: число 23 кажется абсурдно малым для такого совпадения.
Доказательство парадокса дней рождения похоже на те доказательства, что мы использовали в начале главы, изучая комбинации, выпадающие при бросании костей. На самом деле можно переформулировать парадокс дней рождения в виде следующего утверждения: если взять кость с 365 сторонами, то после 23 бросаний более вероятно, что одна и та же грань выпадет два раза, чем что такого не случится.
Шаг 1
Вероятность того, что у двух человек в группе окажется одна и та же дата рождения, равна единице минус вероятность того, что ни у каких двух людей в этой группе дни рождения не совпадут.
Шаг 2
Вероятность того, что в группе из двух человек их дни рождения не совпадут, равна 365/365 × 364/365. Так получается, потому что первый человек может родиться в любой день (365 возможностей из полного числа 365), а для второго остается любой из дней за исключением того, когда родился первый (364 возможности из полного числа 365). Для простоты не будем обращать внимания на лишний день в високосные годы.
Шаг 3
Вероятность того, что ни у кого в группе из трех человек даты рождения не попадут на один и тот же день, равна 365/365 × 364/365 × 363/365. В группе из четырех человек она оказывается равной 365/365 × 364/365 × 363/365 × 362/365 и т. д. Каждое следующее умножение делает результат все меньше и меньше. Когда в группе оказывается 23 человека, результат наконец пересекает отметку в 0,5 (точное значение равно 0,493).
Шаг 4
Если вероятность того, что ни у каких двух человек даты рождения не попадут на один и тот же день, меньше чем 0,5, то вероятность того, что по крайней мере у двух дни рождения совпадут, оказывается больше 0,5 (из шага 1). Так что в группе из 23 человек скорее окажется, что какие-то два человека родились в один и тот же день, чем наоборот.