Книга О том, чего мы не можем знать. Путешествие к рубежам знаний, страница 107. Автор книги Маркус Дю Сотой

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «О том, чего мы не можем знать. Путешествие к рубежам знаний»

Cтраница 107

Как известно, Ферма считал, что нашел решение, но написал на полях своего экземпляра «Арифметики» Диофанта, что эти поля слишком малы для найденного им замечательного доказательства. Прошло целых 350 лет, прежде чем мой коллега по Оксфорду Эндрю Уайлс наконец смог представить убедительное доказательство того, почему целочисленные решения уравнения Ферма найти невозможно. Доказательство Уайлса занимает более сотни страниц, не считая тысяч страниц ранее разработанной теории, на которой оно основано. Так что для его изложения не хватило бы даже очень широких полей.

Доказательство Великой теоремы Ферма – это проявление подлинного мастерства. Я считаю честью для себя жить в то самое время, когда были найдены последние фрагменты этой головоломки.

До того как Уайлс продемонстрировал невозможность существования решения, все еще сохранялась возможность существования каких-нибудь особо хитрых чисел, которые могут быть решением одного из таких уравнений. Я помню великолепную первоапрельскую шутку, которая гуляла по математическому сообществу примерно в то же время, когда Уайлс объявил о своем доказательстве. Суть шутки состояла в том, что Ноам Элкис, уважаемый специалист по теории чисел из Гарварда, получил неконструктивное доказательство существования такого решения. Это первоапрельское электронное сообщение было написано весьма изобретательно, так как слово «неконструктивное» означало, что он не может прямо назвать числа, являющиеся решением уравнений Ферма, но из его доказательства следует, что решение должно существовать. Самое замечательное состоит в том, что многим это сообщение было переправлено через несколько дней после 1 апреля, когда шутка впервые вышла в свет, так что они понятия не имели, что она имеет отношение к первоапрельским розыгрышам.

Даже и без всевозможных розыгрышей математическое сообщество провело 350 лет, не зная, существует ли такое решение. Мы просто этого не знали. Но Уайлс в конце концов прекратил наши мучения. Его доказательство означает, что, сколько бы мы ни перебирали чисел, мы никогда не найдем такие три числа, которые будут решением одного из уравнений Ферма.

Нехватка нейронов

Мы живем в золотой век математики, в течение которого были наконец решены некоторые из величайших нерешенных задач. В 2003 г. российский математик Григорий Перельман решил одну из труднейших задач геометрии, доказав гипотезу Пуанкаре. Однако по-прежнему существует множество утверждений о числах и уравнениях, доказательства которых все еще ускользают от нас: гипотеза Римана, гипотеза парных простых чисел, гипотеза Бёрча – Свиннертон-Дайера, гипотеза Гольдбаха.

Мои собственные исследования, которым я посвятил последние двадцать лет, направлены на выяснение истинности или ложности так называемой гипотезы PORC [111]. Ее сформулировал более 50 лет назад оксфордский математик Грэм Хигман, предполагавший, что число групп симметрии с определенным числом симметрий должно выражаться красивым полиномиальным уравнением (буква Р в аббревиатуре PORC обозначает полином). Например, число групп симметрии с р6 симметриями, где р – простое число, дается квадратичным выражением относительно р: р2 + 39р + с (где с – константа, которая зависит от остатка от деления р на 60).

Результаты моих собственных исследований заставляют серьезно усомниться в справедливости этой гипотезы. Я открыл симметричный объект с р9 симметриями, поведение которого свидетельствует о значительном отклонении от предсказаний гипотезы Хигмана. Но это не дает окончательного решения задачи. По-прежнему возможно, что существуют другие симметричные объекты с р9 симметриями, которые могут скомпенсировать обнаруженное мною странное поведение, – и тогда гипотеза Хигмана останется справедливой. Поэтому на данный момент я не знаю, справедлива ли его гипотеза, а сам Хигман, к сожалению, умер, так и не узнав ответа на этот вопрос. Мне не терпится узнать его прежде, чем и моя конечная жизнь придет к своему концу, и именно вопросы такого рода побуждают меня заниматься математическими исследованиями.

Иногда, когда я блуждаю среди кажущихся бесконечными изгибов и поворотов своих исследований, я сомневаюсь, обладает ли мой мозг достаточными ресурсами для решения той задачи, над которой я работаю. Собственно говоря, при помощи математики можно доказать, что существуют математические задачи, превосходящие физические возможности человеческого мозга, который содержит 86 миллиардов нейронов, соединенных между собой более чем 100 триллионами синапсов.

Математика беспредельна. Она продолжается вечно. В отличие от шахмат, в которых, по оценкам, возможно около 101050 разных партий, число доказуемых математических утверждений бесконечно. В шахматах фигуры «съедают», партии выигрывают, и последовательности повторяются. В математике же не существует эндшпиля, из чего следует, что, даже если все мои 86 миллиардов нейронов будут возбуждаться с максимальной физически возможной скоростью, в течение всей своей жизни я смогу сделать лишь некоторое конечное число логических шагов и, таким образом, познать лишь некоторую конечную часть математики. Что, если для доказательства моей гипотезы PORC требуется больше логических шагов, чем я могу сделать за свою жизнь?

Даже если мы превратим всю Вселенную в один большой компьютер, возможный объем его знания все равно будет ограничен. В своей статье под названием «Вычислительная мощность Вселенной» [112] Сет Ллойд подсчитал, что с момента Большого взрыва Вселенная не могла произвести более 10120 операций с данными, максимальный объем которых составляет 1090 битов. В любой момент времени Вселенная может знать лишь некоторую конечную часть математики. Вы можете спросить: «А что, собственно, вычисляет Вселенная?» На самом деле она вычисляет свою собственную динамическую эволюцию. И хотя эти числа огромны, они все же конечны. Это означает, что мы можем доказать путем вычислений, что в любой момент времени всегда будет нечто, чего мы не знаем.

Но оказывается, что в математике существует и еще более глубокий уровень неизвестного. Даже если бы у нас был компьютер бесконечной мощности и бесконечного быстродействия, и тогда оставались бы вещи, которых мы никогда не узнаем. Одна теорема, доказанная в ХХ в., открыла нам пугающую возможность того, что даже такой компьютер бесконечной мощности может никогда не узнать, справедлива ли моя гипотеза PORC. Эта так называемая теорема Гёделя о неполноте потрясла математику до основания. Возможно, эти гипотезы и справедливы, но мы никогда не сможем доказать их в рамках аксиоматической системы нашей математики. Гёдель доказал, что в рамках любой аксиоматической системы математики существуют математически истинные утверждения, истинность которых невозможно доказать в рамках той же аксиоматической системы. Математическое доказательство существования чего-то, что не может быть доказано, – математика за гранью.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация