Во-первых, не предпринималось попыток использовать гиперпространство с целью упрощения законов природы. Без изначального руководящего принципа Римана, согласно которому в высших измерениях законы природы упрощаются, учёные в этот период двигались наугад впотьмах. Основополагающая идея Римана об использовании геометрии, а именно складчатого гиперпространства, для объяснения сущности «силы» в те годы оказалась забытой.
Во-вторых, никто не пытался воспользоваться фарадеевой концепцией поля или метрическим тензором Римана, чтобы вывести уравнения поля, подчиняющиеся гиперпространству. Математический аппарат, разработанный Риманом, стал сферой приложения чистой математики, вопреки изначальным намерениям самого Римана. Без теории поля гиперпространство становится непредсказуемым.
Таким образом, на рубеже веков циники не без оснований утверждали, что существование четвёртого измерения не подтверждается экспериментально. Хуже того, добавляли они, нет никаких причин обращаться к четвёртому измерению, кроме как для того, чтобы пощекотать широкую публику историями о призраках. Однако эта досадная ситуация вскоре изменилась. Уже через несколько десятилетий теория четвёртого измерения (времени) навсегда изменила ход истории человечества. Благодаря ей у нас появились и атомная бомба, и сама теория сотворения мира. Человеком, благодаря которому всё это стало возможным, был никому не известный физик Альберт Эйнштейн.
4. Тайна света: колебания в пятом измерении
Если она [относительность], как я предвижу, будет подтверждена, его следует считать Коперником XX в.
Макс Планк об Альберте Эйнштейне
История жизни Альберта Эйнштейна выглядит как длинная череда неудач и разочарований. Его мать расстраивалась, что он долго не мог научиться говорить. Учителя в начальных классах считали Эйнштейна глуповатым ротозеем. Они жаловались на то, что Альберт постоянно нарушает дисциплину в классе, задавая дурацкие вопросы. Один учитель даже напрямик заявил мальчику, что предпочёл бы вообще не видеть его в своём классе.
В школе у Эйнштейна почти не было друзей. Потеряв интерес к учёбе, он был исключён из старших классов. Поскольку аттестата об окончании школы он не получил, ему пришлось сдавать специальные экзамены для поступления в колледж. Однако при первой попытке Эйнштейн завалил экзамены и был вынужден сдавать их повторно. Его не взяли даже в швейцарскую армию — помешало плоскостопие.
После завершения учёбы Эйнштейн долго не мог найти работу. Ему, безработному физику, не предложили пост преподавателя в университете, ему не досталась ни одна из вакантных должностей, на которые он претендовал. Занимаясь репетиторством, он зарабатывал жалкие гроши — меньше пяти франков в час. Своему другу Морису Соловину он говорил, что «проще зарабатывать на жизнь, играя на скрипке в общественных местах».
Эйнштейна не прельщали деньги и власть — словом, всё то, к чему стремится большинство людей. Но однажды он пессимистически заметил: «Каждый человек обречён участвовать в этой гонке уже потому, что у него есть желудок». В конце концов по протекции друга Эйнштейн стал малооплачиваемым клерком в швейцарском патентном бюро в Берне, зарабатывая ровно столько, чтобы не обращаться за помощью к родителям. На своё жалованье он содержал молодую жену и новорождённого ребёнка.
Не располагая ни финансовыми ресурсами, ни связями в официальных научных кругах, Эйнштейн приступил к работе в одиночку, не бросая службу в патентном бюро. Оформляя патенты, мыслями он уносился к вопросам, которые занимали его с юности. А потом он взял на себя задачу, которая в конечном итоге изменила ход истории человечества. Орудием Эйнштейна стало четвёртое измерение.
Детские вопросы
В чём сущность гениальности Эйнштейна? В книге «Восхождение человека» (The Ascent of Man), положенной в основу одноимённого телесериала, Якоб Броновски писал: «Гениальность таких людей, как Ньютон и Эйнштейн, заключается в следующем: они задают очевидные, невинные вопросы, ответы на которые оказываются катастрофическими. Эйнштейн умел формулировать подобные вопросы предельно просто»
{29}. Ещё в детстве Эйнштейн задался одним из таких примитивных вопросов: как выглядел бы луч света, если бы удалось поймать его? Увидели бы мы неподвижную волну, застывшую во времени? Этот вопрос положил начало 50-летнему путешествию по миру тайн пространства и времени.
Представим себе попытки обогнать поезд на гоночной машине. Мы жмём на педаль газа, машина мчится вровень с поездом, «ноздря в ноздрю». Теперь заглянем внутрь поезда, где всё выглядит так, словно он находится в состоянии покоя. Мы увидим сиденья и людей, которые ведут себя так, словно поезд не движется. Подобным образом Эйнштейн в детстве воображал путешествие по лучу света. Он считал, что этот луч должен напоминать ряд неподвижных волн, застывших во времени, т. е. луч должен выглядеть неподвижным.
Когда Эйнштейну было 16 лет, он заметил в своих рассуждениях изъян. Позднее он вспоминал:
…После десяти лет размышлений над парадоксом, на который я обратил внимание ещё в шестнадцать, я пришёл к мысли: если гнаться за лучом света со скоростью с (скоростью света в вакууме), то можно видеть этот луч света как пространственное колебательное электромагнитное поле в состоянии покоя. Однако подобное явление не подтверждается ни опытом, ни уравнениями Максвелла
{30}.
Во время учёбы в Политехникуме Эйнштейн утвердился в своих подозрениях. Он узнал, что свет можно описать посредством электрических и магнитных полей Фарадея и что эти поля подчиняются законам поля, сформулированным Джеймсом Клерком Максвеллом. Как и догадывался Эйнштейн, выяснилось, что существование стационарных застывших волн не допускается максвелловыми уравнениями поля. По сути дела, Эйнштейн доказал, что луч света перемещается с одной и той же скоростью с, как бы старательно мы ни пытались догнать его.
Поначалу это предположение выглядело абсурдно. Оно означало, что нам никогда не обогнать этот поезд (луч света). Хуже того, как бы мы ни гнали свой автомобиль, поезд всегда будет опережать нас, двигаясь при этом с одной и той же скоростью. Иными словами, луч света подобен «кораблю-призраку» из тех, о которых рассказывают бесконечные легенды старые моряки. Поймать это призрачное судно невозможно. Как бы стремительно мы ни плыли, корабль-призрак неизменно ускользает, поддразнивая и маня нас.
В 1905 г., продолжая работать в патентном бюро и располагая временем, Эйнштейн тщательно проанализировал максвелловы уравнения поля и на основании этого анализа сформулировал один из принципов специальной теории относительности: скорость света одинакова во всех системах отсчёта, движущихся с постоянной скоростью. Этот на первый взгляд ничем не примечательный постулат — одно из величайших достижений человеческой мысли. Его ставят наравне с законом всемирного тяготения Ньютона как одно из величайших научных творений человеческого разума за те два миллиона лет, на протяжении которых наш вид эволюционирует на Земле. Из этого постулата логически выводится разгадка тайны колоссальных выбросов энергии звёздами и галактиками.