Но к 1980-м гг. «квантовая теория дерева» после полувека почти непрерывного успеха начала выдыхаться. Я отчётливо помню, какая атмосфера досады и раздражения царила в то время среди приунывших молодых физиков. Всем казалось, что Стандартную модель погубил её же собственный успех. Она была настолько удачна, что каждая международная физическая конференция воспринималась как очередная печать одобрения. Все разговоры сводились к очередному успеху в скучном эксперименте со Стандартной моделью. На одной физической конференции я обернулся, чтобы взглянуть на зал, и обнаружил, что половина слушателей уже дремлет; между тем оратор продолжал бубнить и показывать одну схему за другой, демонстрируя способ увязать последние полученные данные со Стандартной моделью.
Я чувствовал себя как физики на рубеже веков. Они тоже, по-видимому, зашли в тупик. На протяжении десятилетий они занимались нудным делом, вписывали в таблицы данные по спектральным линиям разных газов или же решали уравнения Максвелла для всё более сложных металлических поверхностей. Поскольку в Стандартной модели девятнадцать незаданных параметров, которые можно произвольно «настроить» на любую величину, как волну в радиоприёмнике, мне представлялось, что физики потратят ещё несколько десятилетий на поиски точного значения всех девятнадцати.
Пришло время совершить революцию. Следующее поколение физиков манил мир «мрамора».
И конечно, на пути к истинной квантовой теории гравитации возникло несколько серьёзных проблем. Одна из проблем создания теории гравитации заключается в том, что сила этого взаимодействия ужасающе мала. К примеру, требуется масса всей Земли, чтобы удерживать обрывки бумаги на моём столе. Но расчёской, которой я только что причесался, я могу поднять со стола эти бумажки, преодолевая силу планеты Земля. Электроны моей расчёски гораздо мощнее силы притяжения целой планеты. А если мне понадобится сконструировать «атом» с электронами, притянутыми к ядру силой гравитации, а не электрической силой, такой атом должен будет иметь размеры Вселенной.
Обычно мы считаем силу гравитации пренебрежимо малой по сравнению с силой электромагнитного взаимодействия, следовательно, с огромным трудом поддающейся измерению. Но при попытке записать квантовую теорию гравитации ситуация меняется. Квантовые поправки, обусловленные гравитацией, сопоставимы с планковской энергией, или 1019 млрд эВ, т. е. значительно превосходят все возможности, достижимые на планете Земля в данном веке. Запутанность ситуации усугубляется при попытке построить исчерпывающую теорию квантовой гравитации. Как мы помним, специалисты по квантовой физике пытаются проквантовать силу: они разбивают её на мелкие порции энергии, называемые квантами. При бессистемном квантовании теории гравитации её функция постулируется как обмен мелкими порциями гравитации, или гравитонами. Стремительный обмен материи гравитонами — вот что удерживает её от гравитационного распада. В этой модели нам не даёт оторваться от пола и улететь в космос со скоростью тысячу миль в час незримый обмен триллионами крохотных частиц-гравитонов. Но всякий раз, когда физики пытались произвести простые расчёты, чтобы вычислить квантовые поправки к законам гравитации Ньютона и Эйнштейна, они обнаруживали, что результат бесконечно велик и, следовательно, бесполезен.
Посмотрим, к примеру, что происходит при столкновении двух электрически нейтральных частиц. Для того чтобы получить диаграмму Фейнмана для данной теории, нам понадобится приближение, поэтому предположим, что кривизна пространства-времени, а значит, риманов метрический тензор приближается к единице. Предположим, что пространство-время неискривлённое, почти плоское, тогда можно разложить компоненты метрического тензора как g11 = 1 + h11, где 1 — плоское пространство в нашем уравнении, а h11 — поле гравитона. (Эйнштейн, конечно, пришёл бы в ужас, узнав, как специалисты по квантовой физике уродуют его формулы, разбивая метрический тензор. Это всё равно что взять прекрасную мраморную глыбу и разбить её кувалдой.) Совершив это насилие, мы получаем квантовую теорию в традиционном виде. На рис. 6.1, а мы видим, что две нейтральные частицы обмениваются квантами гравитации, обозначенными полем h.
Проблема возникает при обобщении всех диаграмм с петлями: мы видим, что они расходятся, как на рис. 6.1, б. Для поля Янга — Миллса мы могли бы с помощью хитроумных фокусов перетасовывать все эти бесконечные величины, пока не сократим их или не получим величины, не поддающиеся измерению. Однако можно продемонстрировать, что обычные способы перенормировки не срабатывают, если мы применяем их к квантовой теории гравитации. Более чем полувековые старания физиков каким-либо способом избавиться от этих бесконечностей оказались тщетными. Другими словами, попытки сокрушить «мрамор» с помощью грубой силы потерпели крах.
А потом в начале 80-х гг. XX в. возникло любопытное явление. Как мы помним, теория Калуцы — Клейна не находила применения на протяжении 60 лет. Но физики были настолько раздосадованы неудачными попытками объединить гравитацию с другими квантовыми взаимодействиями, что начали преодолевать предубеждённость по отношению к незримым измерениям и гиперпространству. Они были готовы на альтернативный вариант, и таковым оказалась теория Калуцы — Клейна.
Ныне покойный физик Хайнц Пейджелс так вспоминал ажиотаж вокруг возрождения теории Калуцы — Клейна:
После 30-х гг. XX в. концепция Калуцы — Клейна впала в немилость и многие годы не находила применения. Однако вновь оказалась в фокусе внимания в наши дни, после того как физики испробовали все мыслимые способы объединения силы гравитации с другими видами взаимодействия. В отличие от 1920-х гг., сегодня перед физиками стоит задача объединить гравитацию не только с электромагнетизмом, но и с сильным и слабым взаимодействиями. Для этого нужны и другие измерения помимо пятого
{54}.
Даже нобелевский лауреат Стивен Вайнберг с энтузиазмом встретил ренессанс теории Калуцы — Клейна. Но нашлись и такие физики, которые скептически отнеслись к её возрождению. Напоминая Вайнбергу, как трудно экспериментальным путём измерить эти компактифицированные измерения, Говард Джорджи из Гарварда сочинил следующий лимерик:
Стивен Вайнберг из Техаса
Поразить решил всех нас:
В шарик маленький свернул
Весь избыток измерений
Этот скромный гений
{55}.
Хотя теория Калуцы — Клейна тоже была неперенормируема, живой интерес к ней пробудило то, что она давала надежду на «мраморную» теорию. Превращение уродливой, беспорядочной «деревянной» мешанины в чистую, элегантную «мраморную» геометрию было мечтой Эйнштейна. Но в 1930-е и 1940-е гг. о природе «дерева» почти ничего не знали. А к 1970 г. Стандартная модель наконец раскрыла его тайну: оказалось, что материя состоит из кварков и лептонов, связанных вместе полем Янга — Миллса и подчиняющихся симметрии SU (3) × SU (2) × U (1). Задача заключалась в том, как получить эти частицы и загадочные симметрии из «мрамора».