Для живых существ природа предназначила двойные цепочки молекулы ДНК, которые могут раскручиваться и образовывать дубликаты друг друга. Кроме того, у нас в организме содержатся миллиарды миллиардов белковых цепочек, образованных аминокислотами как строительным материалом. В каком-то смысле наши тела можно рассматривать как богатейшие коллекции цепочек — молекул протеина, окружающих наши кости.
«Струнный квартет»
В настоящее время самой удачной версией теории струн считается концепция четырёх физиков из Принстона — Дэвида Гросса, Эмиля Мартинеса, Джеффри Харви и Райана Рома, которых иногда называют «принстонский струнный квартет». Самый старший из них Дэвид Гросс. Вопросы, которые Виттен задаёт на семинарах в Принстоне тихим голосом, можно и не услышать, зато громкий, гулкий и требовательный голос Гросса слышен отчётливо. Всякий, кто проводит семинары в Принстоне, как огня боится острых вопросов, которыми сыплет Гросс. Примечательно, что обычно все они попадают в цель. Гросс и его соавторы предложили так называемую гетеротическую струну. Сегодня из всех вариантов теории Калуцы — Клейна, предложенных в прошлом, именно она с наибольшей вероятностью способна объединить все законы природы в одну теорию.
Гросс убеждён, что теория струн решает задачу превращения «дерева» в «мрамор»: «Создание материи из геометрии — в каком-то смысле именно этим и занимается струнная теория. Её можно воспринимать как таковую, особенно гетеротическую струну — по сути дела, теорию гравитации, в которой частицы материи, а также взаимодействия природы возникают так же, как гравитация возникает из геометрии».
Как мы уже подчеркнули, наиболее примечательная особенность теории струн состоит в том, что в неё автоматически входит теория гравитации Эйнштейна. В сущности, гравитон (квант гравитации) возникает как наименьшая вибрация замкнутой струны. Если теории Великого объединения упорно избегают любых упоминаний о теории гравитации Эйнштейна, то теория суперструн требует включения этой эйнштейновской теории. К примеру, если мы откажемся рассматривать теорию гравитации Эйнштейна как своего рода вибрацию струны, тогда эта теория станет непоследовательной и бесполезной. Именно по этой причине Виттен заинтересовался теорией струн. В 1982 г. он прочёл обзорную статью Джона Шварца и был поражён, когда понял, что гравитация вытекает из теории суперструн уже в силу требования самосогласованности. Он вспоминал, что за всю жизнь не испытывал «более сильного интеллектуального трепета». Виттен говорит: «Теория струн на редкость притягательна, так как мы вынуждены иметь дело с гравитацией. Во все известные и последовательные теории струн входит гравитация, так что если в квантовой теории поля в том виде, в каком она нам сейчас известна, гравитация невозможна, в теории струн она обязательна»
{62}.
Гроссу хочется верить, что, если бы Эйнштейн был жив, он оценил бы теорию суперструн. Ему понравилось бы, что красота и простота теории суперструн в конечном итоге исходят из геометрического принципа, точная природа которого до сих пор неизвестна. Гросс утверждает: «Эйнштейн был бы доволен по меньшей мере целью, если не её реализацией… Ему понравилось бы, что в основе лежит геометрический принцип, которого, к сожалению, мы не понимаем»
{63}.
Виттен даже рискует заявлять, что «все по-настоящему великие идеи в физике» — «побочные продукты» теории суперструн. Он имеет в виду, что в теорию суперструн укладываются все крупные достижения теоретической физики. И даже утверждает, что открытие Эйнштейном общей теории относительности раньше теории суперструн — «просто случайное событие в развитии планеты Земля». По мнению Виттена, где-то в космосе «другие цивилизации Вселенной» вполне могли открыть теорию суперструн первой, а из неё вывести общую теорию относительности
{64}.
Компактификация и красота
На теорию струн в физике возлагают столько надежд по той причине, что она даёт простые объяснения истоков симметрии, присутствующей и в физике частиц, и в общей теории относительности.
В главе 6 мы видели, что супергравитация неперенормируема и слишком мала, чтобы вместить симметрию Стандартной модели. Таким образом, она не самосогласованна и не даёт реалистичного описания известных частиц. И тем и другим свойством обладает теория струн. Как мы вскоре убедимся, она решает проблему бесконечных величин, обнаруженную в квантовой теории гравитации, и даёт конечную теорию квантовой гравитации. Уже за одно это теорию струн следует считать серьёзной претенденткой на звание теории Вселенной. Но у неё есть и дополнительное преимущество. Если компактифицировать некоторые измерения теории струн, выяснится, что она соотносима с симметрией Стандартной модели и даже теориями Великого объединения.
Гетеротическая струна представляет собой замкнутую струну, для которой характерны два типа вибраций — по часовой и против часовой стрелки, — которые рассматриваются отдельно. Колебания по часовой стрелке существуют в 10-мерном пространстве, колебания против часовой стрелки — в 26-мерном пространстве, в котором 16 измерений компактифицированы. (Как мы помним, в исходной пятимерной теории Калуцы пятое измерение компактифицировали, свернув его в круг.) Своим названием гетеротическая струна обязана тому факту, что колебания по часовой стрелке и против неё существуют в двух разных измерениях, но в сочетании дают единую теорию суперструн. Вот почему её название происходит от греческого слова гетерозис, означающего «гибридная сила».
Гораздо больший интерес представляет 16-мерное компактифицированное пространство. Как мы помним, в теории Калуцы — Клейна с компактифицированным N-мерным пространством ассоциируются симметрии, почти как в случае с пляжным мячом. Значит, все колебания (или поля), определённые для N-мерного пространства, автоматически наследуют эти симметрии. Если это симметрия SU (N), тогда все вибрации в пространстве должны подчиняться симметрии SU (N) (так же, как глина наследует симметрии литьевой формы). Таким образом, теория Калуцы — Клейна может вмещать симметрии Стандартной модели. Вместе с тем можно установить, что супергравитация «слишком мала», чтобы содержать все частицы симметрий, относящихся к Стандартной модели. Этого достаточно, чтобы развенчать теорию супергравитации как реалистичную теорию материи и пространства-времени.