В свою очередь, это вдохновило поэта Иэна Буша на следующие строки:
Ты мигай, звезда ночная!
Где ты, что ты — я-то знаю,
Спектроскоп мне не соврёт:
Ты — горящий водород
{82}.
Таким образом, хотя запасы энергии, необходимые для полётов к звёздам в ракете, по-прежнему остались недосягаемыми для Конта (как и для любого современного учёного), решающий шаг в исследованиях не потребовал затрат энергии. Ключевую роль сыграло следующее наблюдение: сигналов, исходящих от звёзд, а именно их излучения, достаточно, чтобы решить задачу и без непосредственных измерений. Точно так же можно надеяться, что сигналов планковской энергии (возможно, от космического излучения или пока ещё неизвестного источника) окажется достаточно для исследования десятого измерения, следовательно, прямые измерения в огромных ускорителях частиц не понадобятся.
Ещё один пример «непроверяемой» идеи — существование атомов. В XIX в. атомистическая гипотеза сыграла решающую роль в понимании законов химии и термодинамики. Однако многие физики отказывались верить в существование атомов, считая их всего лишь математическим приёмом, по случайности дающим точное описание мира. К примеру, философ Эрнст Мах не верил в существование атомов и рассматривал их только как инструмент для вычислений. (Даже сегодня мы не в состоянии получить изображение атома — из-за принципа неопределённости Гейзенберга, хотя косвенные методы решения этой задачи уже существуют.) Но в 1905 г. Эйнштейн обнародовал убедительное, хоть и косвенное, свидетельство существования атомов, показав, что броуновское движение (т. е. хаотичное движение пылинок, находящихся в жидкости во взвешенном состоянии) можно объяснять как беспорядочные столкновения частиц и атомов в жидкости.
По аналогии можно рассчитывать на экспериментальное подтверждение физики десятого измерения с помощью косвенных методов, которые пока ещё не открыты. Вместо фотографий объекта нам, вероятно, придётся довольствоваться фотографиями его «тени». Может быть, косвенный подход будет заключаться в тщательном изучении данных о низких энергиях, полученных в ускорителе частиц, а также представлять собой попытки выяснить, оказывает ли физика десятимерного пространства какое-либо влияние на эти данные.
Третьей непроверяемой идеей в физике была гипотеза о существовании неуловимого нейтрино.
В 1930 г. физик Вольфганг Паули выдвинул гипотезу о новой невидимой частице нейтрино, чтобы учесть недостающий энергетический компонент в некоторых экспериментах с радиоактивностью, в которых, казалось, нарушался закон сохранения материи и энергии. Но Паули понял, что нейтрино почти невозможно обнаружить экспериментальным путём, поскольку они взаимодействуют с материей очень слабо и редко. К примеру, если бы нам удалось изготовить цельный свинцовый брус протяжённостью несколько световых лет от нашей Солнечной системы до альфы Центавра и поместить его на пути пучка нейтрино, для некоторых из них даже такая преграда оказалась бы преодолимой. Нейтрино способны проходить сквозь Землю так, словно её не существует, мало того — триллионы нейтрино, излучаемых Солнцем, постоянно проникают сквозь наше тело даже по ночам. Паули признавал: «Я совершил непростительный грех — предположил существование частицы, которую не обнаружат никогда»
{83}.
Нейтрино настолько неуловимы и невыявляемы, что они даже побудили Джона Апдайка написать стих под названием «Космическая наглость»:
Нейтрино, крохотные тени,
Отринув массу и заряд,
Не признают закон общений,
Взаимодействий и преград.
Они по всей Вселенной шарят,
Не поступаясь прямизной.
Для них — пустой надутый шарик
Трилльоннотонный шар земной.
Ничто не сдвинув и не тронув,
Они проходят сквозь него —
Так сквозь стекло скользят фотоны,
Так пыль проносит сквозняком.
Ни стен для них, ни пьедесталов.
Они способны осадить
Холодную закалку стали
И жаркой меди звон и прыть.
Они летят таким карьером,
Что и не снился жеребцам,
Поверх всех классовых барьеров
Вторгаясь в тело мне и вам.
Их суд немыслимо высокий,
Их приговор неотвратим,
Он шлёт на головы потоки
Неощутимых гильотин.
Ныряя где-нибудь в Евфрате,
Они уходят в глубину,
Чтобы пронзить из-под кровати
Ньюйоркца и его жену.
Средь ночи протыкать перину!
Вы скажете: вот молодцы!
А я считаю, что нейтрино —
Хотя когда-то нейтрино по причине слабого взаимодействия с другой материей, считали совершенно непроверяемой теорией, сегодня мы регулярно получаем пучки нейтрино в ускорителях частиц, проводим эксперименты с нейтрино, которые испускает атомный реактор, и выявляем их присутствие в шахтах глубоко под землёй. (Когда в 1987 г. ослепительная сверхновая звезда озарила небо в Южном полушарии, физики заметили резкий всплеск нейтрино, проходящих через детекторы глубоко в шахтах. Так впервые детекторы нейтрино были применены для проведения важных астрономических измерений.) Всего за три десятилетия нейтрино прошли путь от идеи, которую невозможно проверить, до ценных помощников современной физики.
Проблема в теории, а не в экспериментах
Если рассматривать историю науки за долгий период времени, можно предположить, что основания для оптимизма всё-таки есть. Виттен убеждён, что когда-нибудь наука докопается и до планковской энергии. Он заявляет:
Отличить простые вопросы от сложных не всегда бывает легко. В XIX в. вопрос о том, почему вода закипает при 100º, считался неразрешимым. Если бы кто-нибудь сказал физику из XIX в., что в XX в. эту температуру можно будет просто вычислить, он счёл бы услышанное сказкой… Квантовая теория поля настолько сложна, что никто до конца в неё не верил на протяжении 25 лет.
По мнению Виттена, «удачные идеи всегда получают подтверждение»
{85}.
Астроном Артур Эддингтон даже задавался вопросом, не преувеличивают ли учёные значимость проверки любых предположений. Он писал: «Учёные обычно заявляют, что убеждения должны строиться на наблюдениях, а не на теориях… Я никогда не сталкивался с кем-либо, кто следует этому на практике… Наблюдений недостаточно… теория в значительной мере определяет убеждения»
{86}. Нобелевский лауреат Поль Дирак выразился ещё прямее: «Красота уравнения гораздо важнее соответствия эксперименту»
{87}. Или, говоря словами учёного из ЦЕРНа Джона Эллиса, «как было написано на обёртке конфеты, которая попалась мне несколько лет назад, „в этом мире только оптимисты добиваются хоть чего-нибудь“». Но несмотря на внушающие некоторый оптимизм доводы, ситуация с экспериментами удручает. Я согласен со скептиками в том, что максимум, на который мы можем рассчитывать, — косвенная проверка десятимерной теории в XXI в. Дело в том, что в конечном счёте это теория сотворения, поэтому её проверка неизбежно предусматривает частичное воспроизведение Большого взрыва в лабораторных условиях.