Так, ребенок очень точно знает, что такое «верх» и «низ». Его голова показывает «вверх», его ноги указывают «вниз» (если он стоит нормально); он прыгает «вверх», он падает «вниз». Более того, вскоре он обнаруживает, что все вокруг него разделяют его мнение по поводу «верха» и «низа».
Если ребенку с такими убеждениями показать глобус, где США находятся вверху, а Австралия — внизу, так что маленькие американцы стоят вверх головой, а маленькие австралийцы — вниз головой, его первой реакцией может быть: «Но это же невозможно! Маленькие австралийцы упадут!»
Конечно, если понимать воздействие силы притяжения (а это понимали задолго до Аристотеля, как минимум, с тех пор, как появилось само представление о Земле, см. ч. I), то бояться, что кто-нибудь упадет с любой части Земли, вы уже не будете. Однако вопрос о природе «верха» и «низа» останется открытым. Вы можете позвонить жителю Австралии по международному телефону и сказать: «Я стою вверх головой, поэтому вы, должно быть, вниз головой». Он ответит: «Нет, нет. Я явно стою вверх головой, стало быть, вниз головой стоите вы».
Видите ли вы, таким образом, насколько бессмысленно спрашивать о том, кто прав и кто «на самом деле» вверх головой? Оба правы, и оба не правы. Каждый стоит вверх головой в рамках собственной системы координат, и каждый стоит вниз головой в рамках системы координат другого.
Большинство людей настолько привыкли к этому, что для них «относительный верх» и «относительный низ» не являются больше нарушениями «здравого смысла». На самом деле именно представление об «абсолютном верхе» и «абсолютном низе» кажется теперь неправильным. Если кто-то всерьез будет утверждать, что австралийцы ходят, будучи подвешенными за ноги, его засмеют.
Если принять принципы релятивистской Вселенной (в как можно более юном возрасте), вышеописанное тоже не будет казаться противоречащим здравому смыслу.
Равнозначность массы и энергии
В XIX веке химики все больше убеждались, что масса не может ни появляться ниоткуда, ни исчезать в никуда (закон сохранения массы). Однако Лоренцу и Эйнштейну казалось, что масса появляется при увеличении скорости и исчезает при уменьшении скорости. Конечно, изменения массы на обычных скоростях крайне малы, но они есть. Откуда же тогда берется масса и куда исчезает?
Начнем с того, что представим, что к телу определенной массы (m) прикладывается определенная сила (f). В таких условиях тело получает ускорение (a), а из второго закона Ньютона (см. ч. I) можно сделать вывод, что a =f/m. Присутствие ускорения означает, что скорость тела увеличивается, но в старой ньютоновской модели Вселенной это не влияло на массу тела, она оставалась постоянной. Если силу также рассматривать как постоянную, то f/m тоже остается постоянным и a, ускорение, тоже постоянно. В результате такого постоянного ускорения скорость тела (в ньютоновском представлении) будет возрастать неограниченно и достигнет любого значения, которое вы назовете, — надо только дождаться.
В эйнштейновской же Вселенной наблюдатель, измеряющий скорость объекта, к которому прикладывается непрерывная постоянная сила, никогда не сможет увидеть, как скорость этого объекта превысит скорость света в вакууме. Следовательно, хотя его скорость и возрастает под воздействием постоянной силы, эта скорость возрастает все меньше и меньше и по мере приближения к скорости света она увеличивается гораздо меньше. Короче, ускорение тела под влиянием постоянной силы уменьшается по мере увеличения скорости и становится нулевым, когда скорость достигает световой.
Но опять же по второму закону Ньютона масса тела равна силе, к нему прилагаемой, поделенной на ускорение, производимое этой силой, то есть m = f/a. Если сила постоянна, а ускорение уменьшается по мере увеличения скорости, то a уменьшается по мере увеличения скорости, а f — нет; следовательно, f/a увеличивается по мере увеличения скорости. А это означает, поскольку m = f/a, что масса увеличивается вместе со скоростью. (Так увеличение массы по мере увеличения скорости можно вывести из эйнштейновского допущения о постоянстве скорости света в вакууме.)
Подвергаясь воздействию силы, тело получает кинетическую энергию, которая равна половине его массы, умноженной на квадрат его скорости (ek = ½mv2, см. ч. I). С ньютоновской точки зрения это увеличение кинетической энергии вытекает только из увеличения скорости, поскольку масса считается неизменной. С эйнштейновской же точки зрения это увеличение кинетической энергии является результатом увеличения как скорости, так и массы.
В случаях, когда масса не задействована в изменениях энергии (как гласит точка зрения Ньютона), естественно представлять себе массу как что-то не имеющее отношения к энергии и думать, что, с одной стороны, существует закон сохранения энергии, а с другой — закон сохранения массы и оба закона самостоятельны.
Если же масса меняется и, таким образом, является тесно задействованной в процессах изменения энергии (как это представлял Эйнштейн), естественно думать о массе и энергии как о различных аспектах одного и того же, поэтому закон сохранения энергии будет включать в себя и массу. (Чтобы это стало абсолютно понятным в свете наших предыдущих выводов, мы иногда говорим о законе сохранения массы-энергии, но слово «масса» не является действительно обязательным.)
Движение не создает массу в любом реальном ощущении; масса — лишь один из аспектов общего возрастания кинетической энергии, получаемой из силы, на которую расходуется энергия где-то в другой части системы.
Но предположим теперь, что закон сохранения энергии (включающий в себя массу) остается действительным в релятивистской вселенной (а похоже, так оно и есть). По этому закону, хотя энергия и не может ни появляться, ни исчезать, она может переходить из одной формы в другую. Это означает, что определенное количество массы может быть конвертировано в определенное количество других форм энергии, таких как тепло, например, и что определенное количество энергии в другой форме, например тепло, может, следовательно, конвертироваться в определенное количество массы. А это и есть то, на чем настаивал Эйнштейн.
Равнозначность массы и энергии, объявленная Эйнштейном в его работе 1905 года, стала активно использоваться физиками его времени. Открытие тремя годами позже радиоактивности (частично я буду говорить об этом в III части), казалось, показало ситуацию, в которой энергия бесконечно порождалась из ниоткуда. Когда специальная теория относительности указала путь, ученые стали искать исчезновение массы — и нашли его.
Может показаться удивительным, что никто не заметил взаимных изменений массы и энергии, пока Эйнштейн не вывел их теоретически. Причина этого кроется в самой природе эквивалентности — в точном определении того, какое количество энергии соответствует какому количеству массы.
Чтобы определить это, давайте возьмем обращенный коэффициент Фитцджеральда, равный 1/√(1 – v2/c2). Это также можно записать, следуя алгебраическим преобразованиям, как (1 – v2c2)–½. Выражение, записанное этим образом, можно сказать, принадлежит типу (1 – b)–a. По теореме о биноме (математическое отношение, впервые разработанное самим Ньютоном) выражение (1 – b) –a может быть развернуто в бесконечную последовательность слагаемых, начинающуюся так: 1 + ab + ½(a2 + 1)b2 + …