Книга Популярная физика. От архимедова рычага до квантовой теории, страница 147. Автор книги Айзек Азимов

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Популярная физика. От архимедова рычага до квантовой теории»

Cтраница 147

Электрические батареи различных типов сослужили хорошую службу техническому прогрессу и остаются весьма полезными. На батарейках работают не только карманные фонарики, но и множество других устройств — от детских игрушек до радиоприемников. Химики вроде Дэви использовали их даже для совершения научных открытий, для которых требовались весьма солидные количества электроэнергии. Однако по-настоящему глобальное использование электричества, например для обеспечения электропитания огромных заводов или освещения целых городов, не может быть осуществлено простым соединением миллионов гальванических элементов — это было бы слишком дорого.

Сухой элемент, к примеру, получает свою энергию путем превращения металлического цинка в ионы цинка. С химической точки зрения это равносильно сжиганию цинка — его использованию в качестве топлива. Когда сухая батарея дает ток в 1 А, она потребляет 1,2 г цинка в час. В течение этого часа батарея будет давать мощность 1,5 В x 1 А, то есть 1,5 Вт. Таким образом, 1,5 Вт-ч эквивалентно расходу 1,2 г цинка, а 1 кВт-ч (1000 Вт-ч) равен расходу 800 г цинка. Если бы типичная современная американская семья использовала в качестве источников питания сухие батареи, то при среднем уровне потребления электроэнергии она легко бы «съедала» 8 т цинка в день, не говоря уж о других материалах. Это было бы не просто баснословно дорого, но даже весь цинк, производимый в мире, не мог бы поддерживать экономику, в которой каждая семья потребляла бы цинк в таких количествах. На самом деле наш современный электрифицированный мир просто не смог бы существовать на основе обычных гальванических элементов [106].

Одним из способов уменьшить расходы может стать обращение химических реакций в батарее, чтобы вещества, служащие полюсами, могли быть использованы вновь и вновь. Для сухой батареи это непрактично, однако существуют ведь заряжаемые батареи (аккумуляторы). Наиболее распространенные из них — это элементы, в которых отрицательным полюсом является металлический свинец, а положительным — пероксид свинца. Полюса разделяются достаточно концентрированным раствором серной кислоты.

Когда такая батарея разряжается и из нее извлекается электрический ток (при разнице потенциалов около 2 В на каждую батарею), протекающие при этом внутри элемента химические реакции превращают как свинец, так и его пероксид в сульфат свинца. Во время этого процесса также расходуется серная кислота. Если электричество запускают обратно в батарею (то есть если отрицательный полюс источника питания, работающий при разности потенциалов более 2 В, подсоединяют к отрицательному полюсу батареи, а положительный полюс источника — к положительному полюсу, так что она начинает работать «вспять» вследствие импульса, который сильнее, чем ее собственный), то химическая реакция начинает развиваться в обратном порядке. Вновь формируются свинец и пероксид свинца, а раствор серной кислоты становится более концентрированным. Батарейка снова заряжается. Подобный элемент был впервые создан в 1859 году французским физиком Гастоном Планте (1834–1889).

Грубо говоря, кажется, что когда батарея перезаряжается, то электричество в нее поступает и там хранится. В действительности это не так. Электричество в ней не хранится: попросту происходит химическая реакция, в результате которой появляются химические элементы, которые, в свою очередь, производят электричество. Таким образом, в них хранится химическая энергия и подобные батареи называются аккумуляторными батареями. Именно такие батареи (обычно они состоят из 3–6 последовательно соединенных батарей из свинца и его пероксида) располагаются под капотами автомобилей.

Аккумуляторные батареи тяжелы (из-за содержащегося в них свинца), опасны в обращении (из-за содержащейся в них серной кислоты) и дороги. Тем не менее, из-за того что эти батареи можно часто перезаряжать, ими пользуются на протяжении многих лет без замены и их пользу нельзя недооценивать.

Однако откуда берется электричество для перезарядки аккумуляторных батарей? Если электричество поступает из обычных неперезаряжающихся батарей, то мы опять возвращаемся к самому началу. Вполне очевидно, что, для того чтобы аккумуляторные батареи пользовались массовым спросом, источник электричества для их подзарядки должен быть дешевым и легкодоступным. Например, в автомобилях аккумуляторные батареи постоянно заряжаются от энергии сжигаемого бензина, что намного дешевле и доступнее, чем энергия сжигаемого цинка.

Для того чтобы объяснить, как сжигаемый бензин способствует электроэнергии, мы обратимся к одному простому, но очень важному опыту, проведенному в 1819 году.


Глава 12.
ЭЛЕКТРОМАГНЕТИЗМ
Опыт Эрстеда

С начала XIX века электричество и магнетизм стали восприниматься как две абсолютно независимые друг от друга силы. То есть, конечно, и электричество, и магнетизм сильны, обоим им свойственны отталкивание и притяжение, действие обеих сил слабеет по мере увеличения расстояния обратно пропорционально его квадрату. Однако магнетизм действовал только на железо и (в небольшой степени) на некоторые другие вещества, в то время как электричество казалось всепроникающим в своих проявлениях. Магнетизм проявлял полюса только в парах, а в электричестве они обнаруживались по отдельности; и не существовало никакого магнитного тока, подобного электрическому. Различий обнаруживалось больше, чем сходств.

Однако в 1819 году в результате простого эксперимента, который провел в ходе лекции (без какого-либо ожидания великих последствий) датский физик Ханс Кристиан Эрстед, было совершено важное открытие. Он использовал в ходе лекции сильную батарею и приблизил проволоку, по которой был пропущен ток, к компасу таким образом, что эта проволока была параллельна линии север — юг и соответственно стрелке компаса. (Сейчас неясно, что именно ученый пытался доказать с помощью своих действий.)

Так или иначе, когда Эрстед положил проволоку поверх стрелки компаса, стрелка резко повернулась и благодаря току, идущему по проволоке, стала показывать направление восток — запад. Физик был крайне удивлен, но пошел еще дальше и пустил электрический ток в обратном направлении, присоединив проволоку к электродам в обратной последовательности. Теперь стрелка компаса снова резко повернулась, но в обратную сторону.

Как только Эрстед объявил о своем открытии, физики всей Европы начали проводить дальнейшие опыты, и вскоре стало ясно, что электрические и магнитные явления тесно связаны, то есть теперь нужно было говорить уже об электромагнетизме.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация