Книга Популярная физика. От архимедова рычага до квантовой теории, страница 177. Автор книги Айзек Азимов

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Популярная физика. От архимедова рычага до квантовой теории»

Cтраница 177

Расстояние между атомными ядрами, которые и будут разлагать пучки рентгеновских лучей в спектр так же, как щели обычной дифракционной решетки разлагают в спектр обычный свет, составляет около 10–8 см, что приблизительно и равно длине волны рентгеновского луча.

В опытах Лауэ пучок рентгеновских лучей, проходя сквозь кристалл сульфида цинка, падал на фотопластинку, оставляя вместо четкого отпечатка узор из нескольких точек. Значит, дифракция рентгеновских лучей действительно имела место, что и послужило доказательством волновой природы рентгеновского излучения.

В том же году два английских физика, Уильям Генри Брэгг и его сын, Уильям Лоренс Брэгг, развили идею Лауэ. Проанализировав поведение проходящих через кристалл рентгеновских лучей, они пришли к выводу, что угол отклонения лучей зависит от расстояния между атомами кристалла и от длины волны. Зная расстояние между атомами, можно определить длину волны.

Метод позволял высчитать длину волны рентгеновского луча с достаточной точностью. Спектр рентгеновского излучения, появляющегося при столкновении электронов с преградой, колеблется от 1 (нижняя граница диапазона ультрафиолетового излучения) до 0,01 миллимикрона (7 октав).


Атомные числа

Использование метода Брэгга давало возможность изучить уникальные рентгеновские излучения, о которых говорил Баркла, что и было сделано в 1913 году английским физиком Генри Гвином Джефрисом Мозли (1997–1915).

Мозли изучал рентгеновские лучи группы К применительно к 12 следующим друг за другом элементам периодической системы и обнаружил, что длина волны уменьшалась (то есть частота повышалась) с увеличением атомного веса, причем квадратный корень длины волны увеличивался пошагово.

Мозли предположил, что причиной этому является пошаговое увеличение заряда ядра атома. Ученый пришел к выводу, что ядро простейшего атома несет заряд +1, заряд следующего +2, еще следующего +3 и т. д. Мозли назвал величину этого заряда атомным числом.

Ученый оказался прав. Сегодня за атомный вес водорода принято число 1, гелия — 2, лития — 3 и т. д. В настоящее время определены атомные числа всех известных элементов. В табл. 3 элементы представлены в порядке увеличения их атомных чисел от 1 до 103.

Для периодической системы атомные числа имеют гораздо более важное значение, чем атомные веса. Для того чтобы в таблице все элементы одного семейства были на своих местах, Менделееву пришлось поставить некоторые более тяжелые элементы перед более легкими. Так, кобальт с атомным весом 58,93 стоит перед никелем с атомным весом 58,71.

Мозли выяснил, что кобальт, несмотря на больший атомный вес, производит рентгеновские лучи более низкой, чем никель, частоты. Поэтому и атомное число у кобальта (27) меньше, чем у никеля (28). Хотя Менделееву ничего не было известно о рентгеновских лучах, интуиция химика не подвела его.

Таким образом, если рассматривать те пары элементов, что стоят в периодической системе не по порядку возрастания их атомных весов (аргон — калий, кобальт — никель, теллур — йод), а с точки зрения возрастания атомных чисел, то все становится на свои места.

Кроме того, благодаря открытию атомных чисел у периодической таблицы появляется еще одно свойство. Теперь с ее помощью можно не только предсказывать существование пока еще неизвестных элементов (что Менделеев и сделал), но и их несуществование.

Пока на вооружении ученых были лишь атомные веса, нельзя было сказать наверняка, что в будущем не будут открыты целые семейства новых элементов. Например, в 1890 году было открыто семейство инертных газов (гелий, неон, аргон, криптон и ксенон), и в таблицу тут же добавили новую колонку, ранее о существовании которой даже и не подозревали. Столетие спустя были открыты лантаноиды, и их тоже включили в таблицу. До Мозли никто не мог точно сказать, сколько еще оставалось неизвестных элементов. Десятки? Сотни? Тысячи?

Атомные числа не оставили места для подобных сомнений. Подразумевая, что атомное ядро не может нести дробный заряд, можно с уверенностью заявить, что между водородом (атомное число 1) и гелием (2) или, скажем, фосфором (15) и серой (16) никаких элементов нет.

Впервые химики могли сказать, сколько еще элементов предстояло открыть. Первым элементом в таблице является водород (атомное число 1), других элементов перед ним нет. Во времена Мозли самым тяжелым из известных элементов был уран (92). Между ними были лишь 7 неизвестных элементов с атомными числами 43, 91, 72, 75, 85, 87 и 91.

Рентгенографический анализ можно также использовать для проверки новых элементов. Например, в 1911 году французский химик Жорж Урбен (1872–1938) выделил, как ему показалось, новый элемент и дал ему название «кельтий». Когда Мозли опубликовал свой труд, Урбен решил, что кельтий — это как раз и есть неизвестный элемент с атомным числом 72, и привез образец на проверку к Мозли. Проанализировав уникальное рентгеновское излучение «нового» элемента, Мозли выяснил, что кельтий был на самом деле смесью двух уже известных элементов — иттербия и лютеция (атомные числа 70 и 71). Химические испытания это подтвердили, и потрясенный увиденным Урбен впоследствии сделал много для популяризации концепции атомных чисел.

В течение последующих 12 лет были заполнены 3 пустые клетки таблицы. В 1917 году был открыт протактиний (91), в 1923 году — гафний (72), в 1925 году — рений (75). Еще через 10 лет были заполнены оставшиеся четыре клетки (43, 61, 85, 87). Эти элементы мы рассмотрим ниже.

Зная заряд ядра атома элемента, можно судить и о количестве электронов в атоме. Конечно же атом может потерять или присоединить электроны и превратиться в положительно или отрицательно заряженный ион, но в атоме с нейтральным зарядом количество электронов должно соответствовать заряду ядра. Так, в атоме кислорода с зарядом ядра +18, для того чтобы заряд атома оставался нейтральным, должно присутствовать 18 электронов. То есть количество электронов в атоме равно атомному числу этого элемента. Таким образом, у атома водорода один электрон, у натрия — 11, а у урана — 92.


Электронные оболочки

Теперь возник еще один вопрос: как все эти электроны расположены в атоме? Томсон с его моделью атома в виде булочки с изюмом предположил, что электроны внутри атома расположены по кругам. Чем больше электронов — тем больше кругов.

И хотя модель атома Томсона и была вытеснена моделью атома с ядром Резерфорда, идея о том, что электроны находятся за пределами ядра, казалась вполне вероятной, а существование уникального рентгеновского излучения лишь подтверждало ее. Возможно, что каждая из групп лучей испускалась определенной группой электронов вокруг ядра. Электроны, находящиеся в непосредственной близости от ядра, удерживаются им сильнее, значит, они и производят самое жесткое излучение группы К. Электроны, находящиеся чуть дальше от ядра, будут производить излучения группы L и т. д. Приведенный ниже рисунок наглядно это иллюстрирует.

А почему, например, благородные газы (гелий, неон, аргон, криптон, ксенон и радон) практически не вступают в химические реакции? (На самом деле долгое время считалось, что они вообще ни с чем не реагируют, и только в 1962 году выяснилось, что с некоторыми элементами они все же реагируют.)

Вход
Поиск по сайту
Ищем:
Календарь
Навигация