Книга Популярная физика. От архимедова рычага до квантовой теории, страница 69. Автор книги Айзек Азимов

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Популярная физика. От архимедова рычага до квантовой теории»

Cтраница 69

Через столетие после Бернулли, когда ученые осознали эффект, который температура оказывает на объем и давление газов, потребовалось пересмотреть и расширить кинетическую теорию газов, чтобы объяснить причастность и температуры.

Представьте себе замкнутый сосуд с неподвижными стенками, в котором содержится некоторый газ. Если повысить температуру газа, его давление на стенки сосуда увеличится. Впервые это явление описал в своих работах Амонтон, и, как мы можем видеть из уравнения идеального газа (уравнение 13.12), если произведение объема на давление пропорционально абсолютной температуре, то при постоянном объеме само давление должно быть пропорционально абсолютной температуре.

В соответствии с кинетической теорией газов, давление увеличивается, если число столкновений частиц газа со стенками сосуда в любой данный момент времени увеличивается. Однако поскольку объем сосуда (его стенки неподвижны) не изменился, то каждая из частиц, для того чтобы достигнуть стенок сосуда, проходит одно и то же расстояние как до повышения температуры, так и после. Чтобы объяснить тот факт, что стенок сосуда достигает их большее количество (а следовательно, поднимает давление), следует предположить, что по мере повышения температуры частицы двигаются более быстро. В этом случае они не только чаще ударяются о стенку сосуда, но также и более энергично. И наоборот, по мере понижения температуры они двигаются более медленно.

Приняв это предположение, рассмотрим пример газа, находящегося под абсолютно гладким, обладающим весом поршнем. Направленная вниз сила веса поршня компенсирована направленной вверх силой давления газа. Если поднять температуру газа, го частицы, заставляющие поршень двигаться вверх, будут двигаться более быстро, и их столкновения с днищем поршня будут происходить более часто и энергично. Создаваемое ими давление превысит направленную вниз силу веса поршня, и он будет подниматься до тех пор, пока увеличение объема не увеличит расстояние, которое нужно пройти частицам до столкновения с днищем, до такого, при котором внешние и внутренние силы снова придут в состояние равновесия. Таким образом, мы пришли к выводу, что объем увеличивается с повышением температуры. Подобным же образом мы могли бы и доказать, что он уменьшается с понижением температуры; все происходит согласно закону Гей-Люссака.

Выше я показал, как кинетическая теория газов объясняет газовые законы с качественной стороны. Однако в 1860-х годах шотландский физик Джеймс Клерк Максвелл (1831–1879) и австрийский физик Людвиг Больцман (1844–1906) подошли к кинетической теории газов со всей математической точностью и обосновали ее и с теоретической точки зрения. Давайте рассмотрим часть этого обоснования.

Популярная физика. От архимедова рычага до квантовой теории

Кинетическая теория газов

Начнем с того, что рассмотрим сосуд в форме параллелепипеда (другими словами — в форме кирпича), длина которого равняется a метров, ширина b метров, а высота c метров. Объем (V) такого сосуда равен abc кубическим метрам. Предположим затем, что в пределах этого сосуда находится N частиц, каждая из которых обладает массой m, и что все частицы перемещаются со скоростью v метров в секунду.

Эти частицы могут перемещаться в любом направлении, но такое движение всегда можно рассматривать как составленное из трех компонентов, находящихся под прямым углом друг к другу. (Это может быть сделано на основе «параллелепипеда сил», который является трехмерным аналогом «параллелограмма сил», упомянутого выше.) Для удобства мы можем рассмотреть взаимно перпендикулярные компоненты, а также можем выбрать один компонент — параллельный длине сосуда, другой — параллельный ширине, а третий — параллельный высоте сосуда.

Так как все движения случайны и в каком-либо направлении не существует никакого результирующего движения (иначе весь сосуд улетел бы в межпланетное пространство), справедливо предположить, что каждый компонент содержит равную долю движения. Тогда примем предположение, что 1/3 полного движения частицы параллельна краю a, 1/3 — параллельна краю b, а 1/3параллельна краю c. Это означает, что мы рассматриваем сосуд с газом как содержащий три равных потока частиц, перемещающихся один — на равные величины влево и вправо; другой — вверх и вниз; еще один — вперед и назад.

В действительности все частицы непрерывно сталкиваются друг с другом, отскакивают и изменяют направление. Так как частицы совершенно эластичны, это не изменяет полного движения даже при том, что распределение движения среди отдельно взятых частиц постоянно меняется. Упрощая, можно сказать, что, если одна частица изменяет направление своего движения в одну сторону, другая частица тотчас же изменяет свое направление таким образом, чтобы скомпенсировать действие первой. По этой причине мы можем игнорировать все взаимные столкновения между отдельными частицами.

Давайте сосредоточим наше внимание на одной частице, перемещающейся параллельно краю a. Она ударяется о ребро, составленное из сходящихся плоскостей b и с, и отскакивает назад с той же самой скоростью, но в противоположном направлении (все еще параллельно краю a), таким образом, если ее скорость до столкновения была v, то теперь она стала –v. Количество ее движения перед столкновением было равно mv, количество движения после столкновения стало –mv. Полное изменение в количестве движения частицы равно mv — (–mv), или 2mv.

Согласно закону сохранения импульса (количества движения), это изменение количества движения должно быть компенсировано противоположным по знаку изменением в количестве движения со стороны стенки сосуда. Поэтому стенка отражает частицу в противоположном направлении, и 2mv представляет собой один удар одной частицы о ребро, ограниченное плоскостями b и c. Для того чтобы узнать значение полной силы, действующей на поверхность, мы должны узнать, сколько частиц ударяют в данную поверхность за данную единицу времени.

Что касается отдельно взятой частицы, которую мы рассматриваем, то она, отразившись от плоскости, снова переместится на свое первоначальное место и, отразившись там, повторит весь процесс снова и снова. Величина ее перемещения от одного конца сосуда к другому составляет 2a метров. Так как ее скорость v метров в секунду, то число ее столкновений с рассматриваемой плоскостью сосуда равно v/2a раз за каждую секунду.

Полная сила, воздействующая на стенку одной отдельной частицей за одну секунду, — это изменение количества движения за один удар, умноженное на количество этих ударов в секунду. То есть это равно: 2mv умножить на v/2a, или mv2/a. Но как мы помним, третья часть всех частиц в сосуде (N/3) перемещается параллельно стороне a, и каждая привносит одну и ту же силу. Таким образом, полную силу воздействия всех частиц за одну секунду можно рассчитать, если N/3 умножить на mv2/a, или Nmv2/3a.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация