Книга Популярная физика. От архимедова рычага до квантовой теории, страница 99. Автор книги Айзек Азимов

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Популярная физика. От архимедова рычага до квантовой теории»

Cтраница 99

Естественно, чем больше линза, тем больше света она может собрать и тем более тусклые звезды она может показать. Современный телескоп в Иерксе (дальний потомок телескопа Галилея) имеет собирающую линзу 40 дюймов в диаметре; сравните с диаметром зрачка — он всего 1/3 дюйма! Отношение диаметров — 120 к 1. Количество собираемого света зависит от площади линзы, которая пропорциональна квадрату диаметра. Следовательно, сила собирания света у телескопа в Иерксе в 14 400 раз больше, чем у человеческого глаза, и он показывает звезды, которые во столько же раз тусклее.

Более того, если свет из телескопа сфокусировать на фотопленке, а не на сетчатке, проявляется еще одно преимущество. Свет, попадающий на пленку, производит эффект накапливания (которого он не производит, попадая на глаз). Звезда, которая слишком тускла, чтобы ее можно было увидеть даже в телескоп, будет медленно воздействовать на химикалии на пленке и после соответствующего времени выдержки может быть сфотографирована, даже не будучи увиденной.

Теоретически линзы можно делать все больше и больше, и Вселенная будет исследована все глубже и глубже. Но тут вмешиваются практические соображения. Чем больше линза, тем труднее и сложнее гладко отшлифовать ее и тем труднее не давать ей прогибаться под собственным весом (поскольку держаться она может только на оправе). Вдобавок чем больше линза, тем толще она должна быть, а поскольку ни одна линза не имеет стопроцентной прозрачности, то чем она толще, тем больше света она поглощает. Начиная с определенных размеров делать большие линзы становится невыгодно. Телескоп в Иерксской обсерватории в Висконсине имеет 40-дюймовую линзу и является самым большим телескопом подобного рода в мире. Он был построен в 1897 году, и с тех пор ничего большего не строили. И вряд ли построят.


Глава 4.
ЦВЕТ
Спектр

До сих пор я говорил о свете так, как будто он весь одинаковый, за исключением разницы в яркости между пучками. На самом деле есть еще один различительный признак, знакомый нам всем, — цвет. Мы знаем, что есть красный цвет, синий, зеленый, и так далее со множеством оттенков.

Раньше принято было считать белый свет Солнца простейшей формой света, «просто» светом. (И действительно, белый до сих пор является цветом чистоты, поэтому молодая невеста идет к алтарю в белом платье.) Цвет же, считалось, образуется, когда к свету добавляется примесь. Если свет проходит через красное стекло или отражается от синей поверхности, к нему примешивается краснота или синева и придает ему свойства, которых он сам по себе не имел.

С этой точки зрения нас привело бы в замешательство, если бы мы увидели, как чистый белый свет солнца отображает цвета без какого-либо воздействия цветного вещества. Одним из таких феноменов, известных людям всех возрастов, является радуга — дуга из разноцветного света, которая иногда появляется на небе, когда солнце выходит после дождя. Загадка радуги привела к появлению множества мифологических объяснений; наиболее известное — что она является мостом между небом и землей. Первая попытка дать ей рациональное объяснение была предпринята римским философом Луцием Аннеем Сенекой (ок. 4 до н.э. – 65 н.э.), который подметил, что радуга очень похожа на игру цветов, которую мы часто видим на краю стекла.

К XVII столетию физики начали подозревать, что радуга, так же как и цвета на краю стекла, каким-то образом производится преломлением света. Французский математик Рене Декарт разработал подробную математическую теорию преломления и полного отражения света сферами из воды. Таким образом, он довольно четко мог просчитать, каким будет положение относительно солнца радуги, появляющейся благодаря преломлению солнечных лучей крошечными капельками воды, остающимися висеть в воздухе после дождя, но не смог просчитать цвет.

Право сделать решающий шаг в этом направлении осталось английскому ученому Исааку Ньютону, трудам которого уделено так много внимания в I части этой книги. В 1666 году он пропустил в темную комнату пучок солнечного света так, чтобы тот упал на призму. Преломленный призмой пучок света затем попал на белую поверхность. И там он предстал не в виде белого луча света, а в виде разных цветов, непрерывно перетекающих друг в друга в том же самом порядке, как и в радуге (красный — оранжевый — желтый — зеленый — голубой — синий — фиолетовый). Это было цветное изображение, и оно получило название спектр, от латинского слова, означающего «изображение».

Если свет спектра формировался на поверхности с маленьким отверстием таким образом, что только один из цветов попадает на него и проходит дальше, и если эти цветные лучи попадают сквозь отверстие на следующую призму, пятно света будет шире, но другие цвета в нем уже не появятся.

Популярная физика. От архимедова рычага до квантовой теории

Спектр

Вклад Ньютона заключался не в том, что он получил эти цвета, это делали и до него, а в том, что он предложил им новое объяснение. Единственные ингредиенты, которые производили спектр, — это простой солнечный свет и простое бесцветное стекло призмы. Тогда Ньютон решил, вопреки многолетнему сложившемуся мнению, что свет — не чистый, а является комплексной смесью всех цветов радуги. Он кажется белым только потому, что эта комбинация раздражает сетчатку таким образом, который мозг интерпретирует как «белый цвет».

В пользу этого предположения говорил опыт Ньютона об обратимости создания спектра. Ньютон пустил свет цветного спектра на вторую призму, находящуюся вверх ногами по отношению к первой. Свет в этом случае преломлялся в обратном направлении, и ситуация менялась на противоположную. Если раньше круглый пучок белого света распадался на толстую разноцветную линию, то теперь эта линия вновь сжималась в круг белого света.

Очевидно, белый свет состоит из широкого набора разных видов света, каждый из которых преломляется особым образом. Группа лучей, которые наименее преломляются, дают нам ощущение красного; следующая группа, преломленная чуть больше, дает ощущение оранжевого и так далее вплоть до наиболее преломляемых лучей, которые видятся нам фиолетовыми.

Белый свет из-за этой разницы в преломляемости своих компонентов всегда распадается на цвета, проходя под углом из одной среды в другую с другим коэффициентом преломления. Однако, если вторая среда ограничена параллельными поверхностями (что чаще всего относится к обычному стеклу), этот эффект, получаемый при входе, отменяется при выходе. По этой причине белый свет, входящий в стекло, выходит из него таким же белым. Когда края прозрачной среды не параллельны, как это бывает в призме на грани стекла или в случае круглых капелек воды, разбиение на цвета не отменяется, и в результате мы получаем спектр всех цветов радуги.

Это означает, что при определении коэффициента преломления прозрачного вещества использование белого света приводит к неточностям, поскольку различными цветовыми лучами, содержащимися в нем, демонстрируется достаточное многообразие коэффициентов преломления. По этой причине иногда для определения коэффициента преломления нужно использовать свет [87] какого-то конкретного цвета. Одним из часто используемых приборов является «натриевая лампа» — устройство, в котором свет излучается нагретым в лампе натриевым паром. Свет имеет желтый цвет, и его преломление колеблется в очень незначительном диапазоне.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация