Книга Все эти миры - ваши. Научные поиски внеземной жизни, страница 17. Автор книги Джон Уиллис

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Все эти миры - ваши. Научные поиски внеземной жизни»

Cтраница 17

Такой рисунок наглядно демонстрирует, насколько масса Солнца преобладает над массой всей остальной Солнечной системы. Термоядерный синтез в ядре Солнца высвобождает энергию в форме фотонов и их более пронырливых родственников — нейтрино. Эти фотоны обладают чрезвычайно высокой энергией, и на данном этапе мы будем называть их рентгеновскими и гамма-лучами. Вылетая из ядра, они попадают в зону лучистого переноса, где подвергаются поглощению и повторному излучению. К тому моменту, когда они достигают внешней атмосферы Солнца, фотоны теряют значительную часть своей энергии и покидают дымку фотосферы как солнечный свет, который мы с вами можем видеть.

Солнце служит источником энергии практически для всего живого на Земле, начиная с фотосинтезирующих организмов и далее для всех последующих звеньев пищевой цепочки. Для нас как астробиологов наибольший интерес представляют исключения из этого правила, а именно: экстремофильные бактерии, обитающие рядом с жерлами подводных вулканов, и железобактерии, живущие в глубинах земной коры. Эти существа заслуживают отдельного рассмотрения, так что держите их в уме!

Загородная экскурсия

Оставляя позади Солнце, мы оказываемся в царстве планет. В недалеком прошлом, когда мы не знали о существовании никаких других планетных систем, кроме нашей собственной, Солнечная система нам очень нравилась. Она казалась нам упорядоченной и к тому же полностью соответствовала нашим теориям о том, какой ей надлежит быть. Позднее мы узнаем, как открытие новых планетных систем вокруг отдаленных звезд перевернуло наши представления о том, как они должны выглядеть. Но сейчас я бы хотел внимательно рассмотреть нашу собственную Солнечную систему.

Ближе всего к Солнцу в горячей внутренней области расположены планеты земной группы: Меркурий, Венера, Земля и Марс. Хотя они отличаются друг от друга размерами и условиями на поверхности, все они, в сущности, состоят из горных пород, содержащих железо и силикаты. У планет земной группы очень мало спутников: кроме нашей Луны это Деймос и Фобос, вращающиеся вокруг Марса. За орбитой Марса расположен пояс астероидов — скопление сохранившихся со времен формирования Солнечной системы обломков, попавших в гравитационное поле Юпитера, которое препятствовало их слипанию в планету.

На пути к Юпитеру мы пересечем одну важную границу — снеговую линию. На таком отдалении от Солнца его излучение слабеет настолько, что простые летучие соединения (такие, как вода, аммиак, метан) конденсируются, образуя твердые ледяные частицы. В результате за снеговой линией не только твердые породы, но и лед может участвовать в слипании, и в этом случае формируются газовые гиганты, которые преобладают во внешней области Солнечной системы. Юпитер идет первым, за ним следуют Сатурн, Уран и Нептун.

В отличие от планет земной группы, внешние планеты обладают множеством спутников: у Юпитера в данный момент известно 67, а у Сатурна больше 150. Самые большие из этих спутников превосходят по размеру Меркурий и нашу Луну. Это целые миры, заслуживающие внимательного изучения. Диспропорция в количестве спутников между газовыми гигантами и планетами земной группы объясняется разницей в массе. Во вращающемся диске из газа и пыли, который представляла собой зарождающаяся Солнечная система, газовые гиганты становились все больше и массивней. Со временем они обзаводились собственными миниатюрными дисками из газов и камней, из которых впоследствии сформировалась их многочисленная свита из спутников.

Когда мы удалимся за орбиту Нептуна, яркость Солнца будет в 1000 раз меньше, чем на Земле. Мы вступаем в темное царство Плутона — планеты, впервые обнаруженной Клайдом Томбо в 1930 г. В конце 1990-х — начале 2000-х гг. с помощью больших современных телескопов нового поколения удалось обнаружить еще несколько похожих на Плутон каменистых небесных тел: одни побольше, другие поменьше, но все вместе они составляли рассеянный диск, состоящий из материала, оставшегося после формирования Солнечной системы, и получивший название пояса Койпера. Плутон оказался одним из множества таких же, как он, небесных тел, и тогда встал вопрос: либо все эти объекты следовало признать планетами, либо не признавать ни один из них. В 2006 г. Международный астрономический союз пришел к заключению, что Плутон нельзя считать обычной планетой, и причислил его наряду с еще несколькими крупными астероидами к новой категории карликовых планет. Там они и останутся, если, конечно, наши взгляды на Солнечную систему не изменятся.

Легче всего представить масштабы Солнечной системы, если посмотреть, какое время требуется фотону света, чтобы добраться от поверхности Солнца до каждой из планет. Фотон преодолевает расстояние до Земли за 8 минут. Солнце, которое вы видите в настоящий момент, — то, каким оно было 8 минут назад. Настоящее Солнце скрыто от нас завесой времени, через которую фотон, обладающий конечной скоростью, проникнуть не может. Чтобы продолжить путь от Земли до Марса, фотону потребуется еще 4 минуты. Если задуматься, то радиосвязь — всего лишь поток фотонов низкой энергии, поэтому радиосообщение или телевизионный сигнал смогут преодолеть расстояние от Земли до Марса и обратно за 8 минут. Этим объясняется, почему марсоходы управляются при помощи коротких последовательностей простых команд, а не при помощи джойстика. Из-за восьмиминутной задержки ваш аппарат застрянет или разобьется раньше, чем вы узнаете о том, что ему грозит опасность. Путешествие от Солнца до Юпитера займет у фотона 42 минуты, а до Нептуна, последнего из газовых гигантов, — больше 4 часов. Если мы будем считать орбиту Плутона границей Солнечной системы, фотону потребуется 5 часов 20 минут, чтобы оставить позади пояс Койпера и устремиться к темным глубинам Вселенной.

Теперь вы лучше понимаете свое место в Солнечной системе и ее масштабы. Остается только просмотреть заставку фильма «Контакт» и отметить допущенные неточности.

Длинные руки Солнца

Мы уже знаем, что Солнце — это энергостанция всей Солнечной системы. От него зависит вся жизнь на Земле. Но как далеко простираются возможности Солнца? Когда его влияние ослабнет настолько, что не сможет поддерживать существование жизни?

На верхний слой земной атмосферы приходится примерно 1370 Вт/м2 солнечной энергии. Сумма этой энергии, получаемой изо дня в день, обеспечивает существование всей жизни на Земле и полностью управляет погодой. Количество солнечного света, получаемое каждой планетой и спутником в Солнечной системе, можно рассматривать как базовые средства для жизни — по крайней мере для низших ее форм, таких как фотосинтезирующие бактерии, преобразующие солнечную энергию в питательные вещества.

Так сколько солнечного света получают планеты? Орбита Меркурия расположена ближе к Солнцу, и он получает в шесть раз больше солнечной энергии, чем Земля. Марс находится дальше от Солнца, и ему достается всего 40 % энергии, получаемой Землей. По мере продвижения во внешнюю область Солнечной системы влияние Солнца резко снижается: Юпитер получает лишь 3 % от земной дозы солнечного света. На холодной орбите Плутона солнечного света еще меньше: всего 1 %.

Думаю, нам было бы интересно узнать, сколько света нужно для существования жизни. И снова земной опыт говорит нам, что жизнь обладает удивительной стойкостью. Фотосинтезирующие бактерии были обнаружены на глубине 100 м в Черном море. Однако их метаболизм основан на аноксигенном (бескислородном) фотосинтезе, в результате которого вырабатываются соединения серы, а не молекулярный кислород. Такие бактерии — живые реликты древних фотосинтезирующих организмов. На такие глубины с поверхности проникает только 0,05 % света, т. е. уровень освещенности там почти такой же, как на поверхности Плутона. Но даже на таком низком уровне свет остается биологически продуктивным, поскольку каждая бактерия раз в несколько часов аккуратно ловит фотон и использует его энергию для поддержания метаболизма.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация