Обе гипотезы согласуются с данными. Родители Миры делают предсказания, которые могут быть проверены путем опроса других родителей. Следовательно, обе гипотезы могут считаться законами. Но предположим, что Мира – единственный ребенок на планете. В этом случае нет возможности проверить, являются ли гипотезы ее родителей законами.
Исходя из собственных познаний в биологии человека, родители Миры могут заявить, что дети любят все, сделанное из сахара и молока. Но здесь они опираются на знания, полученные в результате изучения многих людей. И здесь аналогия перестает работать, поскольку в космологии мир лишь один. В науке Вселенная не может считаться единичным экземпляром из класса, потому что ни одно утверждение в отношении свойств этого класса нельзя проверить.
Теперь пример из физики. Первый закон движения Ньютона, гласящий, что все свободные частицы движутся по прямой, многократно подтвержден. Но каждый случай приблизителен, потому что ни одна частица во Вселенной не может быть подлинно свободной. Все частицы испытывают гравитационное воздействие со стороны всех остальных тел. Если бы мы хотели проверить закон точно, у нас не было бы возможности применить его.
Первый закон Ньютона в лучшем случае может служить приближением к другому, более точному закону. И действительно, он является частным случаем второго закона Ньютона, описывающего движение частицы под воздействием сил. Очень интересно: каждая частица во Вселенной гравитационно притягивает любую другую. Есть также силы, действующие между каждой парой заряженных частиц. Сил слишком много, чтобы их все можно было учесть. Чтобы проверить, является ли второй закон Ньютона точным, и предсказать движение лишь одной частицы, нам придется учесть более 1080 сил.
На практике, конечно, мы не можем сделать ничего подобного. Мы учитываем взаимодействие с одним или несколькими близлежащими телами и пренебрегаем всеми остальными. В случае притяжения, например, мы можем обосновать пренебрежение взаимодействием с далекими телами, потому что их влияние мало. (Это не так очевидно. Хотя взаимодействие с далекими частицами слабее, число далеко расположенных тел многократно превышает количество тел, расположенных вблизи.) В любом случае, никто не пытается проверить, является ли второй закон Ньютона абсолютно верным. Мы проверяем лишь приближение к нему.
Другая серьезная проблема, связанная с экстраполяцией ньютонова понятия “закон” на мироздание, заключается в том, что существует одна бесконечная Вселенная – и множество вариантов начальных условий. Этому соответствует бесконечное количество решений уравнений предполагаемого космологического закона – решений, описывающих бесконечное множество возможных Вселенных. Но реальная Вселенная лишь одна.
Уже то, что у закона бесконечное число решений, заставляет заключить, что его следует применять к подсистемам Вселенной, наличествующим в огромном количестве версий. Полнота природы соответствует множеству решений. Поэтому, когда мы применяем закон к небольшой подсистеме Вселенной, свобода выбора начальных условий превращается в необходимую часть успеха приложения закона.
По той же причине, когда мы применяем закон, имеющий бесконечное число решений, к такой уникальной системе, как Вселенная, многое становится необъяснимым. Свобода выбора начальных условий обращается из преимущества в недостаток: возникают вопросы о Вселенной, на которые не отвечает теория, выражаемая этим законом (например, вопросы о любом свойстве Вселенной, зависящем от выбора начальных условий). Что думать о всех других историях, которые также являются решениями гипотетического космологического закона, но которые не происходят во Вселенной? Почему среди бесконечного числа решений лишь одно реализуется? Эти рассуждения приводят к выводу: мы ошиблись в том, какие законы природы могут работать на космологических масштабах. Тому есть три причины:
1) Утверждение, что закон распространяется на космологические масштабы, подразумевает огромное количество информации о предсказаниях, касающихся несуществующих Вселенных. Следовательно, для описания Вселенной необходимо нечто гораздо более слабое, нежели закон. Нам не нужны экстравагантные объяснения, опирающиеся на предсказания, которые нельзя проверить. Вполне достаточно объяснения, которое учитывает лишь то, что на самом деле происходит в нашей – единственной – Вселенной.
2) Обычные законы не могут объяснить, почему решение, которое описывает нашу Вселенную, единственно и описывает именно наш вариант мироздания.
3) Закон не может объяснять сам себя. Он не предлагает разумного обоснования, почему в природе реализуется именно этот, а не какой-либо другой закон.
Так что обычные законы природы применительно к Вселенной объясняют слишком много – и в то же время недостаточно.
Единственный способ избежать этих проблем – найти методы, выходящие за рамки ньютоновой парадигмы, новую парадигму, применимую в масштабах Вселенной. Если мы не хотим, чтобы физика уступила место мистике, мы должны изменить ее методы.
Доводы в пользу устранения времени из физики основаны на предположении, что ньютонова парадигма может быть распространена на Вселенную. Если это не так, то доводы за устранение времени утрачивают силу. Отказываясь от ньютоновой парадигмы, придется отказаться и от этих доводов. И тогда можно предположить, что время реально. Можем ли мы предложить истинную космологическую теорию, если мы примем реальность времени? Ниже я расскажу, почему ответ на этот вопрос – да.
Глава 9
Космологическая задача
Величайшие теории XX века в физике – теория относительности, квантовая теория, стандартная модель – являют собой вершины этой науки. У них прекрасные математические выражения, позволяющие делать предсказания для экспериментов, которые подтверждались неоднократно и с высокой точностью. И все же они не могут претендовать на фундаментальность. Их расширение до описания всего мироздания затрудняет общая черта: каждая из указанных теорий делит мир на две части: первая с течением времени изменяется, а вторая предполагается неизменной. Первая часть – это изучаемая система, степени свободы которой меняются. Вторая соответствует остальной Вселенной, и мы можем назвать ее фоном для первой части.
Эта вторая часть не может быть описана, однако она неявно присутствует в условиях, которые придают смысл движению, описываемому в первой части. Измерение расстояний неявно подразумевает существование неподвижных точек отсчета и инструментов. Указание времени подразумевает существование часов вне системы, в которой измеряется время.
В главе 3 мы обсуждали игру в мяч. Его положение приобретает смысл относительно положения в пространстве, где находится Дэнни. Движение определяется с помощью часов, которые, как предполагается, идут равномерно. И Дэнни, и часы находятся за пределами системы, описанной конфигурационным пространством, и, как предполагается, являются статическими. Без этих фиксированных точек отсчета мы не знали бы, как сравнить предсказания теории с данными эксперимента.
Деление мира на динамическую и статическую части – это фикция, но она очень полезна, когда речь идет о небольшой части Вселенной. Вторая часть, статическая, как предполагается, состоит из других динамических объектов за пределами системы. Игнорируя ее динамику и эволюцию, мы определяем рамки, в которых открываем для себя простые законы.