Идея Хебба была подтверждена эмпирически несколькими десятилетиями позже, когда нейрофизиологам удалось выявить клеточный механизм долговременной, относительно медленной адаптации, локализованной в отдельных синапсах. Этот механизм во многом объясняет различные явления в неврологии и психологии, в частности те, что связаны с обучением и памятью. Тем не менее, хотя за последние несколько десятилетий эта парадигма была успешно применена и исследована в бесчисленных публикациях, существует дилемма: мы можем исследовать мозг, как это сделал Хебб, – на уровне клеток, синапсов и передатчиков (подход «снизу вверх») или же сосредоточиться на конечных функциях мозга и его макроуровневых зонах (стратегия, которая, в отличие от первой, получила название «сверху вниз»).
Но как перейти с одного уровня на другой?
Должен существовать некий способ, с помощью которого эти маленькие локализованные сети нейронов могут влиять на взаимодействие между определенными областями мозга, порождая когнитивные процессы, такие как запоминание и формирование опыта, определяющие нашу индивидуальность. Иными словами, должен быть мост между макромасштабным («сверху вниз») и микромасштабным («снизу вверх»). Хебб не знал, удастся ли нам продвинуться дальше. Но он полагал, что эта локальная активация могла бы, в гораздо больших масштабах, в конечном итоге привести к согласованности в глобальной активности и функционировать во многих других нейронах.
[75]
Эти гипотетические, гораздо более масштабные нейронные соединения в течение многих лет невозможно было зарегистрировать в реальности. Они слишком обширны, чтобы изучить их при помощи методов классической электрофизиологии, которые позволяют наблюдать одновременно лишь несколько нейронов, также эти связи не выявляются и при стандартном сканировании мозга. Помните, что у изображений головного мозга скорость обновления кадров в тысячу раз медленнее скорости, с которой осуществляются нейронные взаимодействия: как и в случае старых викторианских фотографий, упомянутых в главе 1, с их долгой выдержкой, ограничивающей содержание фото лишь статичными объектами. Поэтому все, что можно увидеть с помощью обычного аппарата МРТ, является постоянной активностью в течение нескольких секунд.
Итак, как же ученые смогли узнать, верна ли теория Хебба? Задача состояла в том, чтобы найти способ связать обработку сигнала «сверху вниз» и «снизу вверх». Но все, что нейронаука имела в своем арсенале, – это методы регистрации локализованных сигналов при помощи нескольких электродов и стандартные методы визуализации. Затем, в 90-е годы прошлого века, появилась новая технология – визуализация при помощи потенциал-чувствительных красителей (VSDI). Ее разработал нейробиолог Амирам Гринвальд и его коллеги в Институте Вейцмана в Израиле.
[76] С помощью этой технологии неожиданно стало возможным обнаружить явления, которые остались бы скрытыми при обычном неинвазивном методе имиджинга.
[77] Как следует из названия, VSDI выявляет значения потенциала на клеточной мембране и, следовательно, динамику активности нейронов. Поскольку краситель внедряется в мембрану, это означает, что считывание является прямым, поэтому метод эффективен практически в мгновенном масштабе времени. Теперь, благодаря этому методу, мы можем увидеть в очень быстрых временны́х масштабах, соизмеримых с реальными событиями в мозге, что между клеточным уровнем операций и уровнем анатомически различимых областей головного мозга действительно есть промежуточная ступень обработки сигнала, благодаря которой обширные группы нейронов работают как единое целое.
Рисунок 1 взят из работы моей собственной исследовательской группы в Оксфорде, где мы работаем со срезами головного мозга крыс с использованием VSDI. Результирующая активность после короткого электрического импульса отражена при помощи цветовой шкалы. Красный цвет (на рисунке – белый) обозначает наибольшую активность, фиолетовый (на рисунке – темно-серый) – наименьшую. Между тем зона диаметром в несколько миллиметров, в которой все происходит, велика по сравнению с одной клеткой, но довольно мала по сравнению с анатомически обособленной областью мозга: это истинный мезомасштабный уровень. Обратите внимание, в частности, на очень высокое временно́е разрешение: в течение 8 миллисекунд коллективная активность достигает максимума, а затем, в конечном счете, почти сходит на нет – в данном случае примерно к 20-й миллисекунде эксперимента. Этот процесс прежде не мог быть обнаружен при обычном сканировании мозга.
Рис. 1. Визуализация «ансамбля». Последовательность изображений, сделанных с временным промежутком в 0,001 секунды, демонстрирующая широко распространяющуюся активность, регистрируемую с помощью потенциал-чувствительных красителей в срезе крысиного мозга после импульса стимуляции длительностью в 0,1 микросекунды. Наивысшая активность наблюдается в центре и постепенно снижается к периферии, напоминая круги от брошенного в воду камня. (Badin&Greenfield, неопубликованное)