где каждое число в третьей строке есть произведение трех различных простых.
В предположении, что мы продолжаем так поступать, а также в предположении, что получающиеся члены можно переставлять, как мы пожелаем, выражение
(15.1) превращается в следующее (15.4):
Натуральные числа в правой части — это… что? Это заведомо не все натуральные числа: 4, 8, 9 и 12 там отсутствуют. Но и не простые: присутствующие там 6, 10, 14 и 15 не являются простыми. Если оглянуться на процесс перемножения этого бесконечного количества скобок, то станет ясно, что ответ такой: каждое натуральное число, которое равно произведению нечетного числа (включая 1) различных простых, взятое со знаком минус, и, кроме того, каждое натуральное число, которое равно произведению четного числа различных простых, взятое со знаком плюс. Отсутствуют такие числа, как 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, … — т.е. числа, которые делятся на квадрат некоторого простого.
Поприветствуем функцию Мебиуса! Она названа по имени немецкого математика и астронома Августа Фердинанда Мебиуса (1790–1868).
[137]
Рисунок 15.4. Лента Мебиуса и муравей на ней.
В наше время ее общепринято обозначать греческой буквой μ, что произносится как «мю» — греческий эквивалент буквы «м».
[138] Приведем полное определение функции Мебиуса.
• Ее область определения есть N, то есть все натуральные числа 1, 2, 3, 4, 5, ….
• μ(1) = 1.
• μ(n) = 0, если среди делителей числа n есть квадрат.
• μ(n) = −1, если число n простое или является произведением нечетного числа различных простых чисел.
• μ(n) = 1, если число n является произведением четного числа различных простых чисел.
Такое определение функции может показаться вам страшно громоздким. Однако функция Мебиуса приносит колоссальную пользу в теории чисел и далее в этой книге будет играть ведущую роль. В качестве примера приносимой ею пользы заметим, что все трудоемкие алгебраические действия, через которые нам пришлось продираться, сводятся к изящному выражению (15.5):
V.
B истории Гипотезы Римана наряду с самой функцией μ(n) не меньшую роль играет ее нарастающее значение, т.е. результат сложения μ(1) + μ(2) + μ(3) + … + μ(k) для некоторого числа k. Так определяется «функция Мертенса» М(k). Ее первые 10 значений (т.е. значения при k = 1, 2, 3, …, 10) равны 1, 0, −1, −1, −2, −1, −2, −2, −2, −1. Функция M(k) весьма нерегулярна — она совершает колебания в обе стороны вокруг нулевого значения в стиле, который математики называют «случайными блужданиями». Для аргументов, равных 1000, 2000, …, 10 000, ее значения равны 2, 5, −6, −9, 2, 0, −25, −1, 1, −23. Для аргументов миллион, 2 миллиона, …, 10 миллионов ее значения равны 212, −247, 107, 192, −709, 257, −184, −189, −340, 1037. Если не обращать внимания на знаки, то видно, что величина функции M(k) возрастает, но помимо этого никакой ясной картины не просматривается.
Из выражения
(15.5) видно, что поведение функций μ и M (накапливающейся μ) жестко привязано к дзета-функции, а тем самым и к Гипотезе Римана. На самом деле если вам удастся доказать приведенную ниже теорему 15.1, то вы сможете заключить, что Гипотеза Римана верна!
Теорема 15.1
M(k) = Ο(k1/2).
Однако если теорема 15.1 не верна, то отсюда еще не следует, что не верна Гипотеза. Математики говорят, что теорема 15.1 сильнее Гипотезы.
[139] Слегка ослабленный вариант, сформулированный как теорема 15.2, в точности равносилен Гипотезе:
Теорема 15.2
M(k) = Ο(k1/2+ε) для любого сколь угодно малого числа ε.