Книга Наша математическая вселенная. В поисках фундаментальной природы реальности, страница 26. Автор книги Макс Тегмарк

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Наша математическая вселенная. В поисках фундаментальной природы реальности»

Cтраница 26

По правде сказать, эти данные вовсе не стали прорывом, они лишь отражали медленный, но неуклонный прогресс мирового космологического сообщества в последние годы. Наша работа ни в коей мере не была революционной, мы не открыли ничего удивительного. Скорее мы просто способствовали повышению доверия к космологии и её превращению в более зрелую науку. Для меня самым большим сюрпризом стало как раз отсутствие сюрпризов.

Знаменитый советский физик Лев Ландау сказал, что космологи часто ошибаются, но никогда не сомневаются, и мы видели множество примеров этого — от Аристарха, утверждавшего, что Солнце в 18 раз ближе, чем оно на самом деле, до Хаббла, который в 7 раз завысил скорость расширения Вселенной. Эта эпоха «Дикого Запада» подошла к концу. Мы видели, что и теория первичного нуклеосинтеза, и теория космической кластеризации дают одинаковый результат для плотности атомов и что сверхновые типа Ia дают то же значение для плотности тёмной энергии, что и данные космической кластеризации. Из всех перекрёстных проверок моя любимая — та, что представлена на рис. 4.6: там я начертил пять результатов измерения кривой спектра мощности. Хотя получившие их люди и их методы были разными, все пять, как видите, согласуются друг с другом.

Окончательная карта нашей Вселенной

Ещё многое предстоит найти

Я сижу в постели, набираю эти слова и думаю о том, как сильно изменилась космология. В те годы, когда я был постдоком, мы часто обсуждали, как было бы здорово получить прецизионные данные и, наконец, точно измерить все интересующие нас космологические параметры. Сегодня можно сказать: дело сделано, ответы — в табл. 4.1. И что теперь? Космология исчерпана? Следует ли космологам подыскать себе другое занятие? Нет! Чтобы оценить, как много интересного ещё предстоит сделать, честно взглянем на то немногое, чего удалось достичь космологам: по большому счёту, мы лишь параметризовали наше незнание — в том смысле, что за каждым параметром в табл. 4.1 стоит необъяснённая загадка. Например:

• Мы измерили плотность тёмной материи. Но что это такое?

• Мы измерили плотность тёмной энергии. Но что это такое?

• Мы измерили плотность атомов (1 атом приходится примерно на 2 млрд фотонов). Но какой процесс привёл к такому соотношению?

• Мы посчитали, что амплитуда первоначальных флуктуаций составляла 0,002 %. Но какой процесс их породил?


По мере повышения качества данных мы сможем использовать их для измерения параметров в табл. 4.1 со всё более высокой точностью, то есть со всё большим числом цифр после запятой. Но меня гораздо сильнее вдохновляет использование улучшенных данных для измерения новых параметров. Например, можно попробовать определить иные, кроме плотности, параметры тёмной материи и тёмной энергии. Есть ли у тёмной материи давление? А скорость? А температура? Это могло бы пролить свет на её природу. Действительно ли плотность тёмной энергии строго постоянна? Если бы удалось измерить даже малейшие её изменения во времени или от места к месту, это дало бы нам ключ к пониманию её природы и того, как тёмная энергия влияет на будущее нашей Вселенной. Есть ли у первичных флуктуаций ещё какие-либо закономерности или свойства помимо амплитуды в 0,002 %? Это могло бы многое рассказать о происхождении Вселенной.

Я много думал над тем, как подступиться к этим вопросам, и на все эти вопросы ответ один: получить карту Вселенной! В частности, нам нужны максимально подробные трёхмерные карты Вселенной. Наибольший объём, который мы в принципе можем нанести на карту — та часть пространства, свет из которой успел до нас дойти. Данный объём, в сущности, соответствует внутренности плазменной сферы (рис. 4.7, слева), которую мы исследовали, и, как видно из центрального изображения на этом рисунке, свыше 99,9 % этого объёма остаётся неисследованным. Видно также, что наша лучшая трёхмерная карта галактик, построенная на основе данных Слоуновского цифрового обзора неба, покрывает лишь наши ближайшие космологические окрестности — Вселенная поистине колоссальна! Если добавить на этот рисунок самые далёкие галактики, когда-либо открытые астрономами, они будут чуть дальше, чем на полпути до края, и их окажется слишком мало, чтобы составить сколько-нибудь полезную трёхмерную карту.


Наша математическая вселенная. В поисках фундаментальной природы реальности

Рис. 4.7. Сравнительно с наблюдаемой частью Вселенной (слева) её доля, которая была картографирована (в центре), очень мала и охватывает менее 0,1 % объёма. Как и в случае с Австралией в 1838 году (справа), на карту нанесена лишь полоска по периметру, а большая часть внутренней территории остаётся неисследованной. Окружность на среднем рисунке — это плазма (излучение, составляющее наблюдаемый нами космический микроволновый фон, поступает лишь из её тонкого внутреннего серого края). Небольшая структура вблизи центра — крупнейшая на данный момент трёхмерная карта галактик, построенная на основе данных Слоуновского цифрового обзора неба.


Если бы мы смогли нанести на карту неисследованные части Вселенной, космологию ожидал бы колоссальный прогресс. Мы бы не только тысячекратно расширили свою космологическую осведомлённость, но и (далеко — значит давно) узнали бы подробности того, что происходило в первой половине нашей космической истории. Однако как это сделать? Все методы, которые мы обсуждали, продолжают впечатляющим образом развиваться, но, к сожалению, в обозримой перспективе они, видимо, не позволят картографировать большую долю неохваченного картами 99,9 % объёма Вселенной. Эксперименты по картографированию космического микроволнового фона затрагивают в основном границу этого объёма, поскольку внутри он большей частью прозрачен для микроволн. На таких расстояниях большинство галактик становятся настолько тусклыми, что их трудно увидеть даже в лучшие телескопы. К тому же значительная часть этого объёма настолько удалена, что вовсе не содержит галактик — мы заглядываем в настолько далёкое прошлое, когда большинство их ещё не сформировалось!


Картографирование водорода

К счастью, существует другая технология картографирования. То, что мы считаем пустотой, в действительности не совсем пусто: межгалактическое пространство заполняет газообразный водород. Кроме того, физики давно знают, что газообразный водород испускает радиоволны длиной 21 см, которые можно регистрировать с помощью радиотелескопов. (Когда мой однокурсник Тед Банн преподавал в Беркли и коснулся этой темы, один студент задал ему вопрос: «А какая длина волны у линии длиной 21 см?») Это значит, что, хотя водород невидим для обычных телескопов, посредством радиотелескопов его, в принципе, можно «увидеть» в большей части Вселенной, в том числе задолго до того, как образовались звёзды и галактики. И можно построить трёхмерные карты распределения газообразного водорода, используя явление красного смещения, которое обсуждалось в гл. 2: поскольку радиоволны при расширении Вселенной растягиваются, длина регистрируемых на Земле волн указывает, с какого расстояния (а значит, из какого времени) они к нам пришли. Например, волны, которые, приходя к нам, имеют длину 210 см, были растянуты в 10 раз, а значит, испускались они, когда Вселенная была в 10 раз меньше, чем сегодня. Эту методику называют томографией на волне 21 см, и поскольку она может привести к следующему прорыву в космологии, к ней привлечено большое внимание. В гонку включились многие научные группы, которые стремятся первыми в мире надёжно зарегистрировать едва уловимый сигнал водорода, находящегося на полпути до края Вселенной, однако пока никто в этом не преуспел.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация