Книга Истина и красота. Всемирная история симметрии, страница 37. Автор книги Йен Стюарт

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Истина и красота. Всемирная история симметрии»

Cтраница 37

Дуэль происходила на пистолетах. В отчете о вскрытии говорится, что стрелялись с 25 шагов, но истинная картина могла быть даже страшнее. Статья в номере Le Precursor от 4 июня 1832 года сообщала:

Париж, 1 июня. Вчера злосчастная дуэль отняла у науки юношу, подававшего самые блестящие надежды. Увы, его преждевременная известность связана только с политикой. Молодой Эварист Галуа… дрался на дуэли с одним из своих юных друзей. Оба молодых человека — члены Общества друзей народа, и оба фигурировали в одном и том же политическом процессе. Есть сведения, что дуэль была вызвана какой-то любовной историей. Противники избрали в качестве оружия пистолеты. Когда-то они были друзьями, поэтому сочли недостойным целиться друг в друга и решили положиться на судьбу. Стреляли в упор, но из двух пистолетов заряжен был только один. Пуля ранила Галуа навылет. Его перенесли в больницу Кошен, где он умер два часа спустя. Галуа исполнилось двадцать два года, его противнику L.D. — чуть меньше.

Могло ли «L.D.» означать Пеше д'Эрбенвиля? Возможно. Буква D приемлема ввиду тогдашнего разнобоя с написанием; a L могла быть ошибкой. Статья не слишком надежна в том, что касается подробностей, — в ней неправильно указаны дата дуэли, а также день смерти Галуа и его возраст. Так что инициал тоже вполне мог оказаться ошибочным.

У космолога и писателя Тони Ротмана есть более убедительная версия. Лицо, которое более всего подходит под данное описание, — это не д'Эрбенвиль, а Дюшатле, некогда арестованный вместе с Галуа на Новом Мосту. Биографы Галуа Робер Бурнь и Жан-Пьер Азра сообщают, что Дюшатле был наречен именем Эрнест, но это может оказаться неверным — или, опять же, инициал L ошибочен. Вот что пишет Ротман: «Мы приходим к очень согласованной и правдоподобной картине, когда два старых друга влюбляются в одну и ту же девушку и решают прояснить ситуацию с помощью такого чудовищного варианта русской рулетки».

Эта теория согласуется еще и с ужасающим финальным поворотом сюжета. Галуа получил рану в живот, что в то время почти наверняка означало летальный исход. Такая рана не удивительна, если противники стрелялись с расстояния в несколько метров; если же дрались на 25 шагах, то перед нами еще один пример злой судьбы, преследовавшей Галуа.

Скончался он в больнице Кошен не через два часа, как утверждал Le Precursor, а на следующий день, 31 мая. Причиной смерти был перитонит; умирающий отказался от услуг священника. 2 июня 1832 года Галуа был похоронен в общей могиле на Монпарнасском кладбище.

Его письмо к Шевалье заканчивалось такими словами:

Попросите Якоби или Гаусса публично высказать свое мнение — не о верности, а о важности этих теорем. Я надеюсь, что со временем появятся люди, которые захотят, к большой пользе для себя, расхлебать всю эту кашу.

Но что же на самом деле сделал Галуа? В чем состояла эта «каша», о которой он говорит в своем последнем письме?

Ответ на этот вопрос занимает центральное место во всем нашем рассказе, и его нелегко выразить в паре предложений. Галуа познакомил математику с новой точкой зрения, он изменил ее содержание и сделал необходимый, но непривычный шаг в сторону абстракции. В руках Галуа математика перестала быть наукой о числах и формах — арифметикой, геометрией и набором связанных с ними идей, таких как алгебра и тригонометрия. Она стала наукой о структурах. То, что было исследованием вещей, стало исследованием процессов!

Не следует приписывать всю заслугу в этой трансформации одному лишь Галуа. Он оказался на гребне волны, которую привели в движение Лагранж, Коши, Руффини и Абель. Но он двигался на ней с таким мастерством, что сделал ее своей собственной; он был первым, кто всерьез осознал — математические вопросы порой легче всего понять, если перенести их в область более абстрактных рассуждений.

Потребовалось некоторое время, чтобы красота и значение результатов Галуа пробили себе дорогу к широкому математическому сознанию. На самом деле их едва не потеряли. Спас их Жозеф Лиувилль, сын капитана Наполеоновской армии, ставший профессором в Коллеж де Франс. Лиувилль выступал перед французской Академией — собранием, которое затеряло или отвергло три мемуара Галуа — летом 1843 года.

«Я надеюсь заинтересовать Академию, — начал он, — рассказом о том, что среди бумаг Эвариста Галуа я обнаружил решение, точность которого не уступает его глубине, такой замечательной задачи: узнать, существует или не существует решение в радикалах…»

Если бы Лиувилль не взял на себя долгий труд разбираться в бумагах неудачливого революционера, нередко неаккуратных и путаных рукописях, и не потратил бы значительное время и немалые усилия на угадывание того, что хотел сказать автор, эти рукописи, скорее всего, исчезли бы вместе с мусором, а теории групп пришлось бы ждать, пока те же идеи откроют заново. Так что математика в большом долгу перед Лиувиллем.

Понимание предложенных Галуа методов росло, рождалась новая мощная математическая концепция — концепция группы. Целая ветвь математики — исчисление симметрий, называемое теорией групп — появилась на свет и с тех пор проникла в каждый уголок математики.


Галуа работал с группами перестановок. Перестановка — это способ переупорядочить список объектов. В его случае объектами были корни алгебраического уравнения. Простейший из содержательных примеров дается кубическим уравнением общего вида, у которого имеются три корня a, b и с. Напомним, что есть шесть способов переставить эти символы и что — следуя Лагранжу и Руффини — можно перемножать любые две перестановки, выполняя их последовательно. Мы видели, например, что cba×bca = acb. Действуя подобным же образом, можно построить «таблицу умножения» для шести перестановок. Чтобы было яснее видно, что происходит, припишем каждой перестановке имя, например, положим I = abc, R = acb, Q = bac, V = bca, U = cab и P = cba. Тогда таблица умножения будет выглядеть следующим образом.

I U V P Q R
I I U V P Q R
U U V I R P Q
V V I U Q R P
P P Q R I U V
Q Q R P V I U
R R P Q U V I

Элемент этой таблицы, стоящий в строке X и столбце Y, представляет собой произведение XY, получаемое по правилу «сначала Y, потом X».

Вход
Поиск по сайту
Ищем:
Календарь
Навигация