Книга Математика. Считаем уверенно, страница 19. Автор книги Екатерина Печак, Александра Соболева

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Математика. Считаем уверенно»

Cтраница 19

По истечении времени, которое будет отведено на выполнение доказательств, в режиме «круглого стола» начинается обсуждение заданий. Сначала высказывается отвечающий, потом принимаются поправки и замечания других «ученых». Ведущий («профессор математических наук») ведет протокол заседания и записывает всем игрокам баллы (от 1 до 5 баллов за ответ). В конце игры подсчи-тываются баллы, и ведущий выдает детям сертификаты ученых-математиков.

Задания:

– докажи, что число 759 является трехзначным;

– докажи, что число 12 является четным;

– докажи, что число 27 является нечетным;

– докажи, что число 35 не делится на 2;

– докажи, что число 74 делится на 2;

– докажи, что число 44 не делится на 3;

– докажи, что число 93 делится на 3;

– докажи, что число 87 не делится на 5;

– докажи, что число 65 делится на 5;

– докажи, что геометрическая фигура с тремя сторонами является треугольником;

– докажи, что геометрическая фигура с четырьмя углами является квадратом.

Вы можете сами составлять задания по аналогии, а также включать материал из учебников по математике, актуальный для возраста игроков.

Спраутс (Побеги)

Игра изобретена математиком Дж. Конуэй, развивает прогностическую функцию мышления и функцию контроля.

Материалы: игровое поле с 16 точками, расположенными квадратом: по 4 с каждой стороны (как на рис. 19), два цветных карандаша или фломастера.

Количество играющих: 2 человека.

Возраст играющих: от 8 лет и старше.

Правила игры: два игрока ходят по очереди.

Математика. Считаем уверенно

Рис. 19. Игровое поле для игры «Спраутс»

Правила ходов:

– за один ход можно соединить две точки прямой или кривой линией, на которой ставится новая точка (цветом, выбранным для каждого игрока);

– линия может соединять как соседние точки, так и точки, расположенные далеко друг от друга;

– линии не могут пересекаться;

– в точке может сходиться не более трех линий;

– играют только точки, изначально намеченные на игральном поле (точки, которые будут ставить игроки на линиях, соединять нельзя);

– выигрывает тот, кто сделает последний ход.

Заключение

Итак, кто говорил, что ваши дети не способны к математике?

Думаем, что после того, как поиграли с ними во все описанные нами игры, никто такого уже не скажет. Мы занимались именно развитием математического мышления, а не самой математикой.

Теперь вы научили детей мыслить, и мыслить с удовольствием, потому что именно любовь к предмету и способности к нему дает игровая форма обучения.

Все положительные изменения в успеваемости детей объясняются полимодальностью воздействия игр. В ходе занятий повысились произвольное внимание и контроль, восприятие, внимание и память, улучшилась мелкая моторика рук, сформировались зрительно-пространственные функции и логическое мышление, что не только позитивно повлияло на преодоление разных механизмов математического мышления, но должно было положительно повлиять и на успеваемость по всем предметам, поведение и желание учиться.

Поэтому если вашему ребенку не дается один из школьных предметов, необходимо, прежде всего выявить причины, мешающие ему его освоить, и убедить ребенка, что трудности, стоящие на пути, вполне преодолимы, а также заинтересовать ребенка и пробудить в нем желание «считать и решать».

В заключение хотелось бы вам процитировать рекомендацию, которую всегда дает родителям, психологам и учителям научный руководитель нашего Центра, профессор Жанна Марковна Глозман. На вопрос «Что делать с ребенком?» она всегда говорит: «Хвалите!». А когда ей объясняют, что хвалить не за что, она лукаво произносит: «Ищите!». И не было случая, чтобы этот уникальный рецепт не принес результата!

Не забудьте о том, что у ребенка создался уже школьный негативизм к предмету, и от того, какой будет обстановка, в которой вы занимаетесь, зависит его успех. Попытайтесь наладить с ним контакт, занимайтесь в спокойной, доброжелательной обстановке, и успех обеспечен! Не забывайте подкреплять достижения ребенка словами:

Неужели ты это сам придумал?!

Ты на совесть потрудился!

Я тобой горжусь!

Приятно посмотреть на твою работу!

Видишь, какие у тебя замечательные способности!

Посмотри, ты же сам справился!

Это трудное задание, но ты его выполнил отлично!

Ты сделал это лучше других!

Я бы так здорово не смогла!

Всегда ваши А. Соболева и Е. Печак
Литература

Ахутина Т. В., Обухова Л. Ф., Обухова О. Б. Трудности усвоения начального курса математики в форме квазиисследовательской деятельности // Психологическая наука и образование. 2001, № 1.

Ахутина Т. В., Пылаева Н. М. Преодоление трудностей учения: нейропсихологический подход. – СПб.: Питер, 2008.

Бочарова А. Г., Горева Т. М., Окунь В. Я. 500 замечательных игр. – М., 1999.

Выготский Л. С. Игра и ее роль в психическом развитии ребенка // Вопросы психологии. 1966. № 6. С. 48–57.

Гельденштейн Л. Э., Мадышева Е. Л. Коллекция развивающих игр. – Ростов-на-Дону: «Феникс», 2005.

Глозман Ж. М. Нейропсихология детского возраста. – М.: Академия, 2009.

Игровые методы коррекции трудностей обучения в школе / Под ред. Ж. М. Глозман. – М.: В. Секачев, ТЦ Сфера, 2006.

Куцакова Л. В., Губарева Ю. Н. 1000 увлекательных игр и заданий для детей 5–8 лет. – М.: «Астрель», 2003.

Лурия А. Р. Высшие корковые функции человека и их нарушения при локальных поражениях мозга. – М.: Изд-во Моск. Ун-та, 1969.

Математика от трех до шести / Сост. З. А. Михайлова, Э. Н. Иоффе. – СПб.: «Акцидент», 1996.

Семаго Н. Я. Методика формирования пространственных представлений у детей дошкольного и младшего школьного возраста. – М.: Айрис-пресс, 2007.

Сунцова А., Курдюкова С. Учимся ориентироваться в пространстве. Рабочая тетрадь. – СПб.: Питер, 2008.

Соболева А. Е., Кондратьева Н. Н. Русский язык с улыбкой. Игровые упражнения для предупреждения и преодоления дисграфии. – M.: Творческий Центр Сфера, 2007.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация