Фарадей не использовал термины «электролиз» и «электролит», они появились позже. По-гречески lysis – «растворение, разложение», lytos – «разложенный». Во времена шведского физикохимика Сванте Аррениуса (1859–1927), который в 1887 году создал свою теорию электролитической диссоциации, ошибочно полагали, что ток, проходящий через раствор, вызывает разложение вещества на ионы.
Запомнить, какой заряд у разных ионов, помогает забавный стишок:
Для двух ребят подарков груз
ИОН взвалил себе на спину:
Для КАТИ ОН несет свой плюс,
Для АНИ ОН несет свой минус.
Электронные оболочки: k, l, m; s, p, d, f, g. Английский физик Чарльз Гловер Баркла (Barkla, 1877–1944) в работах, выполненных в 1906–1911 гг., обнаружил, что жесткие рентгеновские лучи, попадая на атомы разных элементов, порождают вторичные рентгеновские лучи. Их энергия характерна для данного вещества и не зависит от энергии первичного излучения (за это открытие Баркла в 1918 году был удостоен Нобелевской премии по физике). Эти вторичные, так называемые характеристические, лучи образуют линейчатый спектр, который распадается на серии, близкие по энергии. Вначале Баркла обнаружил только два типа лучей, которые отличались по проникающей способности, то есть по энергии. Он обозначил их буквами А и В, но потом решил заменить другими – К и L. Он считал, что впоследствии могут быть обнаружены как более, так и менее проникающие (то есть энергичные) лучи, поэтому оставил для них место в алфавите «по обе стороны». Буквы K и L действительно находятся близко к середине английского алфавита – но не в самой середине. Отсюда американский историк химии Уильям Дженсен сделал интересный вывод: не исключено, что буквы K и L Баркла просто взял из своей фамилии (кстати, до этого он тоже использовал первые две буквы фамилии А и В!). Но это так же невозможно доказать, как и то, что Лекок де Буабодран назвал галлий в свою честь, а М. С. Цвет увековечил свою фамилию в открытой им хроматографии.
В 1914 году немецкий физик Вальтер Коссель (1888–1956), используя боровскую модель атома, предположил, что – K– и L-серии соответствуют первому и второму энергетическим уровням. Впоследствии так и оказалось, так что расширять буквенные обозначения серий можно было только в одну сторону: так появились уровни K, L, M, N, O, P, Q, которые соответствуют чаще используемым главным квантовым числам от 1 до 7. Далее выяснилось, что этим энергетическим уровням соответствуют близкие по энергии подуровни, названия которых известны каждому школьнику: это s-, p-, d-, f-подуровни. Буквы эти придумали спектроскописты в соответствии с принятыми когда‑то характеристиками и обозначениями различных спектральных линий: резкая, отчетливая (sharp), главная (principal), диффузная, размытая (diffuse), основная (fundamental). Следующий g-подуровень (в алфавите g следует за f) начнет заполняться начиная с элемента № 121.
Элиминирование. Этот термин, применяемый в основном в органической химии (реакции элиминирования, то есть отщепления, удаления), происходит от лат. eliminare – «выносить за порог, изгонять».
Эмпирический. Эмпирическими называются уравнения или формулы (в том числе и формулы веществ), полученные не теоретически, а на основании опыта. Слово это происходит от греч. empeiria, которое как раз и значит «опыт».
Энтальпия и энтропия. Первый из этих физико-химических терминов произошел от греч. enthalpo – «нагреваю». Понятие «энтальпия вещества» очень близко к понятию «теплота образования вещества». Термин «энтропия» ввел в 1855 году Клаузиус, произведя его от греч. приставки en – «в, внутрь» и trope – «превращение» (а греч. tropos означает «направление, способ, характер»). Интересно, что существует медицинский термин «энтропион» (англ. entropion) – патологический заворот век внутрь.
e1, e2, e1cb, sn1, sn2. Эти сокращения механизмов органических реакций предложили английский химик Кристофер Ингольд (1893–1970) и его американский коллега Эдвард Хьюз (1906–1963). По-английски эти символы означают, соответственно, Elimination unimolecular, Elimination bimolecular (моно– и бимолекулярное элиминирование), Elimination unimolecular conjugate base (мономолекулярное элиминирование с образованием промежуточного сопряженного основания), Substitution Nucleophilic unimolecular, Substitution Nucleophilic bimolecular (моно– и бимолекулярное нуклеофильное замещение).
snr1, aromatic substitution nucleophilic radical (мономолекулярное радикально-нуклеофильное замещение в ароматических системах). Сокращение предложил в 1970 году американский химик Джозеф Ф. Баннет (Joseph F. Bunnett, 1921–2015).
R (газовая постоянная). Впервые это обозначение появилось в статье известного французского физика и инженера Бенуа Поля Эмиля Клапейрона (1799–1864). В 1820–1830 гг. он был профессором Петербургского института инженеров путей сообщения, с 1858‑го – академиком Парижской академии наук. В статье, опубликованной в 1834 году, он обратил внимание на то, что для данного газа выражение pV/(267 + t) постоянно, то есть pV = R(267 + t), где p – давление, V – объем единицы массы газа, t – температура в шкале Цельсия. В 1850 году немецкий физик Рудольф Юлиус Эммануэль Клаузиус (1822–1888), используя экспериментальные данные французского химика Анри Виктора Реньо (1810–1878), уточнил формулу, заменив 267 более точным значением 273. Наконец, ученик Клаузиуса, один из создателей химической термодинамики Август Хорстман (1842–1930) в 1873 году использовал в этом уравнении объем не единицы массы, а единицы количества вещества (то есть мольный объем). При этом в уравнении pV = RT постоянная R стала действительно универсальной газовой постоянной. Откуда же взялась эта буква? По мнению уже упоминавшегося Дженсена, поскольку у Клапейрона величина R означала (для данного газа) постоянное отношение pV/(267 + t), он, возможно, использовал первую букву слова ratio (лат. «отношение»), или raison (фр. «пропорция»), или rapport (фр. «связь, взаимоотношение, соотношение»). Однако эту гипотезу Дженсена невозможно подтвердить, поскольку сам Клапейрон на сей счет не оставил никаких указаний.
В связи с газовыми законами интересно упомянуть, что в разных странах они называются по‑разному. Так, закон pV = const, известный у нас как закон Бойля – Мариотта, в англоязычных странах называют только законом Бойля. Соотношение V ~ T (р = const) у нас – закон Гей-Люссака, в Европе – 1‑й закон Гей-Люссака, в США – закон Шарля. Зависимость p ~ T (V = const) у нас – закон Шарля, в Европе – 2‑й закон Гей-Люссака, в США – закон Гей-Люссака. Что же касается соотношения pV = RT, то на Западе его называют просто уравнением идеального газа, у нас – уравнением Клапейрона, а соотношение pV = (m/µ)RT – уравнением Клапейрона – Менделеева (m – масса вещества, µ – его молярная масса).