Книга Жизнь замечательных веществ, страница 69. Автор книги Аркадий Курамшин

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Жизнь замечательных веществ»

Cтраница 69

Жизнь замечательных веществ

Хоффманн заявляет, что практически любой химик или физик может привести пример безукоризненно точной шкалы, описывающей размеры атомов, но проблема будет заключаться в том, что нередки случаи, когда в пример приводятся разные версии таких шкал, которые, к тому же построены с использованием отличающихся друг от друга критериев. Строго говоря, о точности того или иного значения атомного или ионного радиуса принято судить по тому, насколько хорошо значение согласуется с экспериментальными данными, в первую очередь – с результатами исследования вещества методом рентгеноструктурного анализа, но для разных экспериментальных методик могут получаться несколько отличающиеся друг от друга размеры атомов и ионов. Исследователи из Корнельского университета считают, что необходимо получить стандартизированную шкалу атомных и ионных радиусов, не зависящую от эмпирических данных – такая шкала могла бы использоваться для прогнозирования свойств кристаллических решеток и молекулярных структур.

Рам, Хоффманн и Эшкрофт решили ввести «универсальный» радиус атома, определив его как расстояние от ядра до области, в которой плотность электронов принимает значение меньшее, чем 0,001 электрон на бор3 (1 бор – боровский радиус атома, составляющий 0,53 Ангстрема). Далее величины радиусов атомов и ионов, основанные на описанном выше определении, рассчитывались с помощью метода функционала плотности с учетом всех релятивистских эффектов. Предложенный американскими теоретиками подход позволил получить значения, которые, как написано в соответствующей статье, «исключительно хорошо согласуются» со значениями атомных радиусов, определенных при анализе кристаллических решёток.


Жизнь замечательных веществ

Несмотря на то что понятие «химический элемент» содержит определяющее слово «химический», синтез новых атомных ядер и заполнение пустых клеток Периодической системы в настоящее представляют заслугу не столько химиков, сколько физиков. Станем ближе к химии – перейдём от отдельных атомных ядер-рекордсменов к веществам-рекордсменам. Для начала рассказ пойдет о самых маленьких устройствах, когда-то созданных человеком.

Самые маленькие механизмы, или На молекулярных машинах за Нобелевской премией
Жизнь замечательных веществ

Нобелевская премия 2016 года в области химии присуждена Жан-Пьеру Саважу, Фрейзеру Стоддарту и Бернарду Феринге «за проектирование и синтез молекулярных машин». Разработанные ими устройства, размеры которых в тысячи раз меньше толщины человеческого волоса, действительно состоят из отдельных деталей, каждой из которых является молекула. Молекулярный мотор, молекулярный лифт и даже способная перемещаться машина-молекула с четырьмя колесами – звучит как фантастика, но все это реальные достижения, удостоенные высочайшей научной награды.


Интересно, что эру молекулярных машин предсказал тот же человек, который за четверть века до этого в своей ставшей классикой лекции «Там, внизу, полно места!» предрек расцвет нанотехнологий – лауреат Нобелевской премии по физике 1965 года Ричард Филлипс Фейнман. В публичной лекции 1984 года Фейнман сказал, что рано или поздно появятся миниатюрные машины с подвижными элементами размерами в одну или несколько молекул, подобные жгутикам бактерий, но созданные в лаборатории гигантскими руками человека. Фейнман считал, что способные к совершению механической работы синтетические молекулярные системы появятся в 2010–2020 годах. Как видим, это предсказание блестяще подтвердилось.

Фейнман мог и не знать, что первые шаги к созданию молекулярных машин были сделаны еще за год до его предсказания. В 1983 году Жан-Пьер Саваж, работавший тогда в Университете Луи Пастера над диссертацией под руководством Жан-Мари Лена, разработал практически выполнимый метод синтеза первого класса молекул без химических связей – катенанов (J. Am. Chem. Soc. 1960, 82 (16), 4433–4434). Жан-Мари Лен, наставник Саважа и один из отцов-основателей супрамолекулярной химии, получит Нобелевскую премию по химии в 1987 году «за разработку и применение молекул со структурно-специфическими взаимодействиями с высокой селективностью».

Катенаны – это системы из двух и более макроциклических соединений, сцепленных как звенья цепи, однако не образующих при этом химической связи друг с другом (само название «катенан» происходит от латинского слова catena – цепь). Конечно, Саваж не первым получил катенаны – цепочку, состоящую из двух переплетенных макроциклов, впервые синтезировали еще в 1964 году (Angew. Chem. Int. Ed. 1964, 3 (8), 546–547), из трех – в 1967-м (Chem. Ber. 1967, 100 (6), 2021–2037). Однако до работ Саважа получение молекулярных цепей было скорее любопытным курьезом органического синтеза – замыкание макроциклов и образование катенанов происходило случайным образом, и их выходы не превышали 2–3 %. Саваж впервые предложил методологию направленного синтеза катенанов, даже в самых первых экспериментах увеличив их выход до 42 %.


Жизнь замечательных веществ

Как это часто бывает в химии (и в других науках тоже), метод направленного синтеза появился благодаря счастливой случайности. Работа Саважа была связана с фотохимией и разработкой молекулярных комплексов, способных поглощать энергию солнечного света и использовать ее для инициирования химических реакций. Построив модель одного из таких комплексов, отличающихся фотохимической активностью, Саваж неожиданно понял, что этот комплекс похож на катенан – две молекулы, закрученные вокруг находящегося в центре иона меди.


Жизнь замечательных веществ

Синтез катенанов методом Саважа


Это существенно изменило направление его исследований. Используя фотохимически активный комплекс с медью в качестве модели, Саваж и его коллеги синтезировали циклическую молекулу и молекулу в форме серпа, после чего обе молекулы присоединили к иону меди за счет координационной связи (см. рис. 1). Ион меди был не только «якорем», он выступал и в роли шаблона, предопределяющего форму. На следующем этапе синтеза серповидная молекула взаимодействовала с третьим строительным блоком, образуя второй макроцикл, который замыкался вокруг первого, и получались два первых звена молекулярной цепи, механически связанных друг с другом. На заключительном этапе удаляли выполнивший свою работу ион меди (Tetrahedron Lett. 1983, 24 (46), 5095–5098).


Жизнь замечательных веществ

Данный метод сделал возможным направленные исследования в области топологической химии – ионы металлов использовали в качестве строительных лесов для синтеза структур все более и более сложных, от длинных молекулярных цепей до молекулярных узлов причудливой формы.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация