Книга Эволюция Вселенной и происхождение жизни, страница 40. Автор книги Пекка Теерикорпи

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Эволюция Вселенной и происхождение жизни»

Cтраница 40

Таблица 12.1. Относительное обилие (в процентах по массе) химических элементов на Солнце, Земле и в человеческом теле.

Эволюция Вселенной и происхождение жизни

Современный химический анализ показывает, что остальные звезды не сильно отличаются от Солнца. А именно, водород — самый распространенный элемент; его доля составляет примерно 72 % массы звезды. Доля гелия около 26 %, а на долю остальных элементов остается не более 2 %. Однако содержание именно этих тяжелых элементов на поверхности звезд сильно различается от одной звезды к другой.

Больше информации из спектра.

Наряду с данными о химическом составе, спектр звезды несет много другой информации, например, он сообщает о скорости движения звезды относительно наблюдателя. Ее измерение основывается на принципе, предложенном в 1842 году австрийским ученым Кристианом Доплером (1803–1853). Согласно закону Доплера, длина волны света меняется пропорционально скорости излучающего тела. Это явление хорошо известно для звуковых волн. Например, сирена машины «скорой помощи» слышна на высоких тонах (короткая длина волны), когда автомобиль приближается к нам, но тон сразу же становится ниже (длина волны возрастает), как только машина промчится мимо и начнет удаляться от нас (рис. 12.7). Точно так же спектральные линии звездного света смещаются к голубому концу спектра, то есть их длина волны уменьшается, когда звезда приближается к нам. И наоборот, если звезда удаляется, ее спектральные линии смещаются к красному концу спектра. Относительный сдвиг, называемый красным смещением, показывает скорость удаления звезды.

Эволюция Вселенной и происхождение жизни

Рис. 12.7. Эффект Доплера: источники, излучающие волны, движутся относительно чуткого наблюдателя, фиксирующего систематические различия длин волн, приходящих от отдаляющегося и приближающегося источников.

Фактически Доплер считал, что можно определить скорость звезды по ее цвету. Но для типичных скоростей звезд изменения цвета настолько малы, что их невозможно заметить. Спустя несколько лет французский физик Ипполит Физо, не зная о работах Доплера, предположил, что можно использовать узкую спектральную линию в качестве индикатора небольшого изменения длин волн в спектре движущейся звезды.

Доля энергии в разных частях спектра не зависит от природы излучающего тела, неважно — это кусок железа или далекая звезда. Видимый цвет зависит только от температуры тела. Это заметил еще в 1792 году производитель фарфора Томас Веджвуд при разогревании разных материалов. Примерно сто лет спустя немецкий физик Вильгельм Вин (1864–1928) более точно сформулировал эту идею, и сейчас ее называют законом смещения Вина: длина волны максимума в распределении энергии излучения пропорциональна температуре тела, выраженной в градусах Кельвина (врезка 12.1).

Если быть точным, то закон смещения Вина выполняется только для идеальных тел, где происходит 100 %-ное излучение и поглощение света. Такие идеализированные тела называют «абсолютно черными», подчеркивая их способность поглощать лучи. Если тело не излучает свет, оно выглядит черным. Отверстие в лабораторной печи является хорошим приближением к абсолютно черному телу, поскольку свет не отражается от отверстия. Таким образом, свет, исходящий из этого отверстия, можно рассматривать как излучение абсолютно черного тела. Звезды также являются довольно хорошими примерами черных тел. Автором этого понятия был Густав Кирхгоф.

Врезка 12.1. Закон смещения Вина.

Длина волны (в сантиметрах) максимума в излучении (λmax) зависит от температуры (T), выраженной в кельвинах (К), следующим образом:

λmax(см) = 0,2898/T

Эволюция Вселенной и происхождение жизни

Большинство небесных тел светят потому, что они очень горячие. О температуре тела можно судить по области длин волн, в которой излучение максимально сильное. Оптическое (видимое) излучение приходит от звезд, похожих на Солнце (температура около 6000 К), а очень горячие звезды (скажем, 30 000 К) излучают ультрафиолетовый свет. Инфракрасный свет излучается намного более холодными планетами и межзвездной пылью. Рентгеновское излучение исходит, например, из солнечной короны или от газа с температурой в миллионы градусов, заполняющего скопления галактик.

Когда тело нагревают, то не только смещается в голубую сторону цвет его максимально яркого излучения, но и возрастает общая мощность излучения (энергия, отданная за секунду). Австрийский физик Йозеф Стефан (1835–1893) предложил формулу (закон Стефана): мощность излучения тела пропорциональна четвертой степени его температуры в градусах Кельвина.

Напомним, что градусы Кельвина (К) получаются из градусов Цельсия, если прибавить к ним 273. Нулевая точка на шкале Кельвина соответствует самой низкой возможной температуре, называемой абсолютным нулем и равной -273 °C. Ввел точку абсолютного нуля на шкале температур Уильям Томсон (1824–1907). Отец Томсона был профессором математики в университете г. Глазго. Он брал маленького сына слушать свои лекции. В возрасте 10 лет Уильям официально стал студентом университета и в 15 лет уже читал книги ведущих физиков. Через два года его зачислили в Кембриджский университет. На экзамене по математике в Кембридже он занял только второе место, и это вызвало у него большое разочарование. Когда в 1846 году отец умер, Уильям занял его место профессора в университете Глазго. В этой должности он оставался 53 года.

Исследования Томсона в области термодинамики привели его в 1848 году к мысли о введении абсолютной шкалы температур. В точке абсолютного нуля на этой шкале тепловое движение молекул теоретически должно прекратиться. Абсолютная шкала температур Кельвина, как ее сейчас называют, получила свое название по титулу лорда Кельвина Ларгского, который он получил от Британского правительства в 1892 году. Кельвин — это река, протекающая невдалеке от университета, где работал Уильям Томсон.

Мы прошли немалый путь для разгадки природы света: описали его свойства как волнового явления и обсудили некоторые приемы, позволяющие измерить по спектру скорости отдаленных звезд, их химический состав и температуру поверхности. Но чтобы лучше понять роль света в физической реальности, мы должны теперь обратиться к другим явлениям — электричеству и магнетизму.

Глава 13 Электричество и магнетизм

К началу первого десятилетия XVIII века из всех областей физики только механика обрела вид, близкий к современному. После смерти Ньютона в 1717 году другой важный раздел физики — исследование электричества и магнетизма — все еще оставался совершенно не разработанным. Наиболее важные открытия в этой области были сделаны в течение следующего столетия, и они неожиданно, как это часто бывает в науке, привели к новому, единому взгляду на электромагнетизм, свет и другие виды излучения.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация