Другими словами, энергия кванта увеличивается с уменьшением длины волны. Отдельные радиокванты имеют слишком маленькую энергию, чтобы их обнаружить. Фотоны видимого света более энергичны: одного фотона видимого света достаточно, чтобы разрушить молекулу. Адаптированный к темноте человеческий глаз способен различать отдельные фотоны, потому что их энергии достаточно для возбуждения палочек сетчатки. Ультрафиолетовые и рентгеновские фотоны обладают энергией, достаточной для выбивания электрона из атома, а гамма-кванты способны разрушать не только атомные ядра, но даже протоны и нейтроны.
Этой обратно пропорциональной зависимостью между длиной волны и энергией объясняется одна из важных тенденций в физике ХХ века: строительство всё более и более мощных ускорителей. Чем глубже пытаются проникнуть физики в структуру материи, исследуя молекулы, атомы, ядра, кварки и т. д., чем более мелкие объекты они исследуют, тем меньшие длины волн им нужны для получения чётких изображений этих объектов. Но уменьшение длины волны неизбежно требует увеличения энергии квантов. Для получения таких высоких энергий частицы приходится ускорять до огромных кинетических энергий. Например, для ускорения электронов до огромных энергий приходится строить гигантские по размерам установки. Стэнфордский линейный ускоритель (SLAC), располагающийся неподалёку от того места, где я живу, может ускорить электроны до энергий, в 200 000 раз превосходящих их массы. Но это требует машины примерно в две мили длиной. SLAC является по существу двухмильным микроскопом, который позволяет наблюдать объекты в тысячу раз меньшие, чем протон.
По мере того как на протяжении XX века физикам становились доступны для изучения всё более мелкие объекты, ими обнаруживались всё более неожиданные вещи. Одним из самых драматических стало открытие, что протоны и нейтроны не являются элементарными частицами. Расстреливая нуклоны высокоэнергетичными частицами, учёные сумели различить составляющие их крошечные компоненты – кварки. Но даже при самых больших энергиях (которым соответствуют самые малые длины волн) электрон, фотон и кварк остаются, насколько мы можем утверждать, точечными объектами. Это означает, что мы не можем обнаружить никакой внутренней структуры или составляющих частей электронов и кварков, равно как не можем и определить их размеры. Они так и остаются для нас бесконечно малыми точками.
Вернёмся к принципу неопределённости Гейзенберга и его последствиям. Представим себе один шар на бильярдном столе. Так как шар не может покинуть бильярдный стол, мы автоматически кое-что уже знаем о его положении в пространстве: неопределённость его положения не больше, чем размеры стола. Чем меньше стол, тем более точно мы знаем положение шара, но тем выше становится неопределённость импульса. Если бы мы начали измерять скорость шара, запертого в пределах бильярдного стола, то в разные моменты времени получили бы разные значения скорости, и в первую очередь это касается направления скорости. Если же мы попытаемся отобрать у шара всю его кинетическую энергию, то обнаружим, что в квантово-механическом случае остаточные колебания не могут быть устранены. Брайан Грин
[19] придумал для описания этого движения термин квантовая дрожь, и я буду следовать его примеру. Кинетическая энергия, связанная с квантовой дрожью, называется энергией нулевых колебаний, и её невозможно отобрать у квантового объекта.
Существование квантовой дрожи, требуемое принципом неопределённости, приводит к интересному следствию, когда мы пытаемся охладить обычное вещество до нулевой температуры. Тепло, как известно, представляет собой кинетическую энергию случайных движений молекул. В классической физике при охлаждении системы до абсолютного нуля молекулы в конце концов полностью останавливаются и, как результат, их кинетическая энергия тоже становится равной нулю.
Каждая молекула в твёрдом теле имеет вполне определённое положение, только она удерживается на месте не бортами бильярдного стола, а другими молекулами. Принцип неопределённости требует, чтобы каждая молекула обязательно обладала некоторой скоростью. В результате в реальном веществе, подчиняющемся законам квантовой механики, кинетическая энергия никогда не может быть отобрана у молекул полностью, даже при абсолютном нуле!
Координата и скорость – отнюдь не единственные параметры, на которые накладывает ограничение принцип неопределённости. Существует много пар так называемых сопряжённых величин, которые не могут быть определены одновременно: чем более точно фиксируется одна, тем сильнее флуктуирует другая. Очень важным примером является принцип неопределённости энергии-времени: невозможно определить точный момент времени, в который происходит событие, и точное значение энергий объектов, принимающих в нём участие. Предположим, что физик-экспериментатор захотел столкнуть две частицы в конкретный момент времени. Принцип неопределённости энергии-времени ограничивает точность, с которой он может измерить энергию частиц, а также момент времени, в который произошло столкновение. Увеличение точности измерения энергии неизбежно приводит к увеличению неопределённости момента столкновения – и наоборот.
Ещё один важный пример, который мы рассмотрим в главе 3, касается величин электрического и магнитного полей в определённой точке пространства. Эти поля, которые будут играть главную роль в последующих главах, являются невидимой субстанцией, заполняющей пространство и управляющей силами, действующими на электрически заряженные частицы. Напряжённости электрического и магнитного полей, подобно координате и скорости частицы, не могут быть определены одновременно. Если точно известна напряжённость одного, то напряжённость другого обязательно неопределённа. По этой причине поля находятся в состоянии постоянного «дрожания», которое не может быть устранено, что, как и следует ожидать, приводит к появлению некоторой плотности энергии, даже в абсолютно пустом пространстве. Эта вакуумная энергия привела к одному из величайших парадоксов современной физики и космологии. Мы ещё неоднократно вернёмся к нему в следующих главах.
Неопределённость и дрожь – ещё не всё. Квантовая механика имеет другую, квантовую сторону. Слово «квантовый» подразумевает некоторую степень дискретности, или зернистости, природы. Фотоны – порции энергии, составляющие световые волны, являются лишь одним из примеров. Электромагнитное излучение является колебательным процессом, или, другими словами, осцилляцией. Ребёнок на качелях, колеблющаяся пружина, вибрирующая скрипичная струна, звуковая волна всё это колебательные явления, и все они обладают свойством дискретности. В каждом случае энергия изменяется квантовыми дискретными порциями, которые не могут быть разделены на части. В макроскопическом мире пружин и качелей величина кванта энергии настолько мала, что нам кажется, будто энергия может принимать любые произвольные значения. Но на самом деле энергия любого колебания кратна некоторой минимальной неделимой величине, равной частоте колебаний, умноженной на постоянную Планка.
Электроны в атоме также колеблются, окружая ядро. В этом случае квантование энергии можно описать, воображая, что электроны движутся по дискретным орбитам. В атоме, который построил Бор, электроны представляются бегающими вокруг ядра, как если бы они были вынуждены двигаться по отдельным полосам беговой дорожки. Энергия электрона определяется номером полосы, которую он занимает.