Книга Максвелл. Электромагнитный синтез, страница 21. Автор книги Мигель Анхель Сабадель

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Максвелл. Электромагнитный синтез»

Cтраница 21

Решение в 1859 году нашел Максвелл, который занимался изучением диффузии газов. Проблема, добавившаяся к предыдущей, касалась скорости диффузии. Вернемся к нашему флакончику духов. Изначально при нормальном давлении и температуре молекулы должны двигаться очень быстро, со скоростью сотни метров в секунду. Тогда почему запах духов распространяется так медленно? В своей статье Клаузиус предположил, что каждая молекула подвергается очень большому числу столкновений, при которых не происходит потери энергии (в физике они называются «упругими столкновениями»), и при каждом из них она полностью меняет направление. Таким образом, чтобы запах духов дошел до другого конца комнаты, молекула должна пройти многокилометровый путь. Максвелл объяснил проблему, с которой столкнулся, предельно ясно:

«Если ты едешь со скоростью 17 миль в минуту и полностью меняешь направление 1700000000 раз в секунду, где ты будешь через час?»

Клаузиус предположил, что все молекулы газа движутся на одной и той же скорости, и это было похоже на правду. Но ему не приходило в голову взглянуть на проблему по-другому. Для Максвелла эта проблема была похожа на ту, с которой он столкнулся, размышляя о кольцах Сатурна. Как и в том случае, он не мог составить уравнение для каждого из атомов газа. Что делать? Это был момент вдохновения, приправленный, кроме того, большой дозой смелости. Максвелл решил отложить вездесущие законы Ньютона и подойти к проблеме, как будто он ставит эксперимент у себя в лаборатории, а именно применить теорию вероятностей и статистику к газам. Как хороший экспериментатор, он знал, что ошибки при измерениях подчиняются статистическим законам, используемым социологами для изучения населения. То, что сделал Джеймс, было прыжком в бездну, потому что никому в голову не приходило применять данные законы к физическим процессам.

Речь шла не о том, чтобы рассматривать свойства каждого отдельного атома, а о том, чтобы усреднять эти свойства в их совокупности. Мы не сможем назвать, например, скорость конкретной молекулы, зато можем дать распределение скоростей совокупности молекул, которые составляют газ. Это означает, что нам удастся вычислить с некоторой точностью, сколько молекул перемещается с заданной скоростью, и мы можем сделать то же самое для энергии каждой частицы. Максвелл осуществил гигантский прорыв в физике, впервые в истории сформулировав статистический закон в одном-единственном уравнении. Такой подход к изучению газов сразу приводит нас к интересным последствиям.

На микроскопическом уровне можно описать то, что происходит с газом при заданном распределении скоростей и значений энергии составляющих его молекул. Кроме того, на макроскопическом уровне можно точно так же описать сам газ, измерив его термодинамические свойства, такие как давление, температура или внутренняя энергия. Следовательно, так как в обоих случаях мы имеем дело с описанием одного и того же объекта, то они должны быть связаны между собой: мы должны уметь связать, например, температуру газа с механическими свойствами составляющих его молекул. Более того, температура, тепло и работа — всего лишь следствия того, что происходит внутри газа на микроскопическом уровне.

Эта интерпретация тепла как следствия молекулярного состава материи восходит, как мы хорошо знаем, к временам Демокрита. Однако появлению первой рациональной и серьезной формулировки мы обязаны Джону Джеймсу Уотерстону (1811-1883), инженеру-железнодорожнику. В 1845 году он послал в Королевское общество статью, в которой доказывал, что давление газа на стенки сосуда может быть объяснено столкновениями с ними молекул газа. Эта работа закладывала основы молекулярной интерпретации тепла, а вместе с тем и начало новой отрасли физики — статистической механики. Статья была отвергнута и отправлена в архив, потому что тем, кто ее оценивал, было сложно поверить в то, что атомы могут свободно двигаться внутри сосуда, от стенки к стенке, и свойства газов сводятся к простой механике. Уотерстон также был крайне непредусмотрителен, забыв упомянуть, что один из великих ученых всех времен, Даниил Бернулли, профессор математики и физики в Базельском университете, уже писал о подобном в своем классическом трактате 1738 года под названием «Гидродинамика».

В главе «О свойствах и движении упругих флюидов [газов], в особенности воздуха» Бернулли выдвинул гипотезу о том, что газ — это скопление частиц, движущихся очень быстро, и его давление вызвано столкновениями данных частиц со стенками емкости, в которой он находится. Предположив, что кинетическая энергия этих частиц пропорциональна температуре, ученый сделал вывод: давление также пропорционально температуре. Таким образом он предвосхитил появление закона Гей-Люссака. Гипотеза Бернулли не имела успеха, поскольку в то время полагали, что тепло является ощутимым выражением действия таинственной невесомой субстанции, которая движется от тела к телу, — теплорода. И хотя данный трактат стал основой для тех, кто пожелал бы узнать все необходимое о гидродинамике, это предположение было забыто.

Двумя годами позже, в 1847 году, Джон Герапат предположил в своей «Математической физике», что свойства газа — это результат кинетической энергии частиц. Однако и на него никто не обратил внимания.


Мы можем найти примеры самых высоких научных доктрин в играх и спорте, путешествиях по земле и воде, в грозе и шторме — везде, где есть движущаяся материя.

Джеймс Клерк Максвелл


Работа Уотерстона спала сном праведников, пока в 1892 году Джон Уильям Стретт (1842-1919), или третий барон Рэлей, как он известен в мире физики, не нашел ее в архивах и не опубликовал. Но Уотерстон уже этого не увидел.

В 1839 году он работал в Индии по контракту с Ост-Индской компанией. В1857 году Уотерстон вернулся в родной Эдинбург, чтобы полностью посвятить себя изучению тепла, а 18 июня 1883 года вышел прогуляться и бесследно исчез.

Бедному Уотерстону не повезло: была отвергнута не только его статья. Его идеи также проигнорировали, когда он представил их Британской ассоциации содействия развитию науки на ежегодном собрании 1851 года. Там он сказал следующее:

«Равенство давления и температуры в газах происходит, когда количества атомов на единицу объема равны и живая сила [кинетическая энергия] каждого атома одинакова».

Он сравнил две величины, которые, по мнению его уважаемых коллег, было невозможно сравнивать: кинетическую энергию частиц и температуру газа. Утверждая, что средняя кинетическая энергия молекул газа одинакова, он дал первую формулировку того, что позже стало известно как теорема о равнораспределении кинетической энергии. Таким образом, Уотерстон дал физическое объяснение температуры, но, вероятно удрученный отсутствием интереса со стороны своих коллег, не смог увидеть, какие возможности открывает его предположение. Вместо него это сделал Максвелл в работе 1860 года «.Пояснения к динамической теории газов».


КИНЕТИЧЕСКАЯ ТЕОРИЯ

Теоретический гений Максвелла позволил ему сделать на основе тех же идей, которые высказывал и Уотерстон, интересные выводы о некоторых свойствах газов, подтвержденных экспериментами. Основная идея расчетов Максвелла заключалась в ряде довольно простых предположений. Во-первых, газы состоят из огромного числа одинаковых частиц, которые интенсивно двигаются. Во-вторых, размер частиц ничтожен по сравнению со свободным пространством между ними, и когда они сталкиваются (а частицы это делают постоянно), то отскакивают, не теряя ни малейшей части первоначальной энергии. В лучшем случае часть энергии может перейти от одной частицы к другой (молекулы также выполняют принцип сохранения энергии, и мы предполагаем, что они совсем не передают энергию молекулам, составляющим сосуд). В-третьих, частицы обладают единственной энергией — собственно, кинетической энергией их движения по сосуду. Все эти условия возможны только тогда, когда газ является одноатомным, то есть его атомы не образуют между собой связей. В противном случае у частиц газа имеется и иная энергия из-за того, что в таком газе существуют другие виды собственного движения: например, колебания и вращения вокруг центра тяжести.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация