Книга Достучаться до небес. Научный взгляд на устройство Вселенной, страница 25. Автор книги Лиза Рэндалл

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Достучаться до небес. Научный взгляд на устройство Вселенной»

Cтраница 25

Возьмем, к примеру, ключицу. По–английски, кстати говоря, эта кость называется «воротниковой» (collarbone), потому что при внешнем осмотре действительно напоминает воротник. Но стоило ученым заглянуть внутрь тела человека, и на этой кости обнаружился своеобразный выступ-«ключ», который и дал кости второе название — clavicle (от лат. clavicula — ключик, втулка).

Точно так же никто не понимал, как устроена у человека система кровообращения, как капилляры соединяют артерии и вены, пока в XVII в. Уильям Гарвей не провел серию педантичных опытов по исследованию сердца и кровеносной сети у животных и человека. Гарвей, хотя и был англичанином, изучал медицину в Университете Падуи. Там он многому научился у своего наставника Иеронима Фабриция, который тоже живо интересовался кровотоком, но неверно интерпретировал роль венозных сосудов и клапанов в них.

Гарвей не просто изменил представления о том, какие объекты задействованы в кровеносной системе, — он показал, что в теле человека есть две системы —· артерии и вены, которые по ветвящейся сети доставляют кровь ко все более мелким капиллярам, — но и открыл совершенно новый процесс. Оказалось, что кровь доставляется к клеткам таким образом, какого никто не мог предугадать, пока не всмотрелся внимательно в происходящее. Гарвей обнаружил в теле человека не просто набор различных органов — он обнаружил целую неизвестную систему.

Однако у Гарвея еще не было инструментов, которые позволили бы ему обнаружить капилляры; это удалось сделать только Марчелло Мальпиги в 1661 г. Гарвей же выдвинул несколько гипотез, которые получили экспериментальное подтверждение значительно позже. Хотя Гарвей оставил подробные рисунки, он не мог добиться той детальности, которая стала доступна пользователям микроскопа, например Антони ван Левенгуку.

Система кровообращения человека содержит эритроциты — красные кровяные тельца. Длина этих элементов составляет всего лишь семь микрометров — это одна стотысячная доля длины метровой линейки. Это в сто раз меньше толщины кредитной карты — примерно такой же размер имеют капли тумана. Самые мелкие объекты, которые способен различить невооруженный человеческий глаз, немного меньше толщины человеческого волоса и крупнее эритроцита примерно в десять раз.

Разумеется, кровь и кровообращение — не единственные процессы в человеческом теле, о которых ученым удалось со временем узнать. Кроме того, исследование внутренней структуры тела не ограничивается микронными размерами. После Гарвея были открыты еще более мелкие и совершенно новые элементы и системы как в человеческом организме, так и в неодушевленных физических системах.

Дойдя до размеров в одну десятую микрона — длин, которые примерно в десять миллионов раз меньше длины метровой линейки, — мы обнаруживаем ДНК, фундаментальный строительный элемент любого живого существа, хранящий генетическую информацию. Объекты такого размера все еще в 1000 раз крупнее атома, но это уже уровень, где важную роль играет молекулярная физика (то есть химия). Молекулярные процессы, протекающие внутри ДНК, до сих пор понятны не до конца; ясно, однако, что они лежат в основе невероятно широкого спектра жизненных форм, завоевавших земной шар. Молекулы ДНК содержат миллионы нуклеотидов, и квантово–механические атомные связи играют на этом уровне очень существенную роль.

Молекулы ДНК также делятся по величине на несколько категорий. Структура ДНК очень сложна, а молекулы так перекручены, что полная длина человеческой ДНК может измеряться метрами. Но ширина двойной цепочки ДНК составляет всего лишь около двух тысячных долей микрона — примерно два нанометра. Это немного меньше самого маленького на сегодняшний день транзисторного ключа в микропроцессоре, размеры которого составляют около 30 нм. Длина одного нуклеотида составляет примерно 0,33 нм; он сравним по размеру с молекулой воды. Средний ген представляет собой цепочку из 1000-100000 нуклеотидов. Самое информативное и полезное описание гена основано как ответ на совершенно другие вопросы, чем те, которые мы стали бы задавать в отношении единичного нуклеотида. Таким образом, ДНК на разных линейных масштабах работает по–разному, а ученые ищут при этом ответы на разные вопросы и используют разные ее описания.

Биология схожа с физикой в том, что структуры, которые мы видим на крупных масштабах, всегда состоят из более мелких элементов. Но в биологии мало разобраться в отдельных элементах, чтобы понять принципы работы более крупных структур в живых системах. Да и цели у биологии гораздо более амбициозны. Мы считаем, что на самом базовом уровне именно законы физики определяют процессы, протекающие в человеческом теле, но функциональные биологические системы сложны и запутанны, к тому же часто порождают трудно предсказуемые последствия. Распутать структуру из базовых элементов и разобраться в сложнейших механизмах обратных связей необычайно трудно, а комбинаторика генетического кода еще и усложняет эту задачу. Даже если мы узнаем все о базовых элементах, останутся еще эмерджентные структуры и эмерджентное же поведение, в которых, по всей видимости, и кроется тайна жизни.

Физики тоже не всегда могут разобраться в процессах, протекающих на более крупных масштабах, при помощи знаний о структуре отдельных «кирпичиков», но физические системы в большинстве своем проще в этом отношении, чем биологические. Хотя структура материи сложна и может иметь совершенно иные свойства, чем составляющие ее элементы, механизмы обратной связи и эволюционные процессы, как правило, не играют здесь столь заметной роли. Для физиков поиск самого простого, самого элементарного компонента представляет собой важную цель.

АТОМНЫЙ МАСШТАБ

Уйдя от механики биосистем и опускаясь глубже по шкале линейных размеров, чтобы разобраться уже в базовых физических элементах, мы остановимся ненадолго на размере атома — около 100 пикометров, что в 10 тысяч миллионов (1010) раз меньше метра. Точный размер атома определить трудно, поскольку в его составе присутствуют электроны, которые циркулируют вокруг ядра, но никогда не застывают на месте. Традиционно, однако, в качестве размера атома указывают среднее расстояние от электрона до ядра.

Говоря о физических процессах, протекающих на этих крошечных расстояниях, нередко прибегают к наглядным изображениям, но необходимо помнить, что все они основаны на аналогиях. У нас нет другого выхода, и для описания непривычных структур, которые ведут себя странно с точки зрения здравого смысла, приходится привлекать описания объектов, с которыми мы сталкиваемся в обычной жизни.

Корректно изобразить внутреннее строение атома невозможно — ведь рассчитывать при этом мы можем лишь на собственные физиологические качества, а именно чувства и двигательные способности, применимые только в человеческом масштабе. Человеческое зрение, к примеру, опирается на явления, которые видимыми делает свет, то есть электромагнитное излучение. Световые волны — те, что попадают в оптический диапазон — имеют длину волны примерно от 380 до 750 нм. Это намного больше размера атома, который составляет примерно одну десятую нанометра (рис. 14).

Достучаться до небес. Научный взгляд на устройство Вселенной

Вход
Поиск по сайту
Ищем:
Календарь
Навигация