Книга Достучаться до небес. Научный взгляд на устройство Вселенной, страница 91. Автор книги Лиза Рэндалл

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Достучаться до небес. Научный взгляд на устройство Вселенной»

Cтраница 91

Интересно, что в суперсимметричной модели частицы, которые мы считаем очень разными, — бозоны и фермионы — можно заменить на противоположные, и в результате получится ровно то же, с чего все началось. У каждой частицы есть партнер противоположного квантово–механического типа, обладающий в точности такими же зарядами и массой и отличающийся только моментом импульса. Названия новых частиц звучат довольно забавно — на лекциях они обязательно вызывают смешки в аудитории. К примеру, партнером фермионного электрона является бозонный селектрон. Бозонный фотон состоит в паре с фермионным фотино, а W–бозон спарен с Wino–фермионом. Новые частицы взаимодействуют между собой подобно соответствующим частицам Стандартной модели, но при этом обладают противоположными квантово–механическими свойствами.

В суперсимметричной теории свойства каждого бозона сопоставлены свойствам его суперпартнера–фермиона, и наоборот. Поскольку у каждой частицы есть суперпартнер, и все взаимодействия между ними строго сбалансированы, теория допускает существование столь причудливой симметрии, которая заменяет фермионы бозонами, и наоборот.

Чтобы понять загадочную на первый взгляд взаимную компенсацию виртуальных вкладов в массу хиггса, следует вспомнить, что суперсимметрия подбирает каждому бозону соответствующий партнер–фермион. В частности, бозону Хиггса в этой модели ставится в соответствие фермион Хиггса, или хиггсино. Если на массу бозона квантово–механические добавки оказывают существенное влияние, то масса фермиона не может быть много больше его классической массы, то есть массы без учета квантово–механических поправок.

Логика здесь заложена довольно тонкая, но большие поправки не возникают, потому что массы фермионов относятся как к правым, так и к левым частицам. Масса позволяет им превращаться друг в друга и обратно. Если классического массового члена нет и частицы не могут превращаться друг в друта до прибавления квантово–механических виртуальных эффектов, то они не смогут сделать этого и после учета всех квантово–механических вкладов. Если фермион с самого начала не имеет массы (то есть не имеет классической массы), то его масса останется нулевой и после включения квантово–механических поправок.

К бозонам подобные аргументы не применимы. Бозон Хиггса, к примеру, имеет нулевой собственный момент импульса, так что ни в каком смысле мы не можем говорить о том, что он вращается влево или вправо. Но из соображений суперсимметрии массы бозонов соответствуют массам фермионов. Поэтому если масса хиггсино равна нулю (или мала), точно такой же должна быть согласно теории суперсимметрии масса его партнера — бозона Хиггса — даже с учетом квантово–механических поправок.

Мы пока не знаем, верно ли это довольно изящное объяснение стабильности иерархии и компенсации поправок к массе хиггса. Но если суперсимметрия действительно решает проблему иерархии, то мы многое можем сказать о том, каких результатов следует ожидать на БАКе. В этом случае мы знаем, какие именно новые частицы должны существовать, потому что у каждой известной частицы должен быть суперсимметричный партнер. Мало того, мы можем оценить массы новых частиц.

Разумеется, если бы суперсимметрия в природе соблюдалась в точности, мы бы сразу знали и массы всех суперпартнеров. Они были бы попросту идентичны массам соответствующих известных частиц. Однако ни одну частицу–суперпартнер до сих пор обнаружить не удалось. Это свидетельствует о том, что суперсимметрия, даже если она реально существует в природе, не может быть строгой. При строгой суперсимметрии мы давно уже открыли (>ы и селектрон, и скварки, и все остальные суперсимметричные партнеры, предсказанные теорией.

Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими. Согласно теории нарушенной суперсимметрии у каждой частицы по–прежнему есть суперпартнер, но массы этих суперпартнеров отличаются от масс оригинальных частиц Стандартной модели.

Однако если суперсимметрия нарушена слишком сильно, она не сможет разрешить проблему иерархии, потому что мир при сильно нарушенной симметрии выглядит в точности так же, как если бы этой симметрии вовсе не было. Суперсимметрия должна быть нарушена ровно настолько, чтобы мы до сих пор не могли наблюдать ее признаков, но чтобы масса Хиггса была тем не менее защищена от больших квантово–механических вкладов, которые сделали бы ее слишком большой.

Это говорит о том, что суперсимметричные частицы должны иметь массы масштаба слабого взаимодействия. Будь они легче — и мы бы их уже обнаружили; будь они тяжелее — и следовало бы ожидать более тяжелого хиггса. Мы не можем точно сказать, какими будут эти массы, ведь и масса Хиггса известна нам лишь очень приблизительно. Но мы знаем, что если эти массы окажутся слишком большими, то проблема иерархии никуда не денется.

Поэтому мы делаем вывод о том, что если суперсимметрия существует в природе и решает проблему иерархии, то должно существовать множество новых частиц с массами в диапазоне от нескольких сотен гигаэлектронвольт до нескольких тераэлектронвольт. Это именно тот диапазон, в котором БАК должен будет вести поиск. При энергии столкновения 14 ТэВ коллайдер должен выдавать эти частицы даже с учетом того, что кваркам и глюонам, порождающим при столкновении новые частицы, достается лишь небольшая часть исходной энергии протонов.

Проще всего будет получить на БАКе суперсимметричные частицы, несущие сильный (или цветовой) заряд. Эти частицы при столкновении протонов (или, точнее, при столкновении кварков и глюонов в них) могут рождаться в изобилии. Иными словами, при штатной работе БАКа могут возникать новые суперсимметричные частицы, участвующие в сильном взаимодействии. Если это так, они оставят в детекторах очень заметные и характерные следы.

Эти сигнатуры — экспериментальные свидетельства, оставляемые частицей — зависят от того, что происходит с частицей после возникновения. Большинство суперсимметричных частиц будут быстро распадаться. Причина в том, что, как правило, для каждой такой тяжелой частицы существует более легкая частица (такая как частицы Стандартной модели) с точно таким же полным зарядом. Если это так, то тяжелая суперсимметричная частица распадется на частицы Стандартной модели таким образом, чтобы сохранился первоначальный заряд, и эксперимент обнаружит только частицы Стандартной модели.

Вероятно, этого недостаточно, чтобы распознать суперсимметрию. Однако почти во всех суперсимметричных моделях суперсимметричная частица не может распадаться исключительно на частицы Стандартной модели. После ее распада должна остаться другая (более легкая) суперсимметричная частица. Причина в том, что суперсимметричные частицы появляются (или исчезают) только парами. Поэтому на месте распада одной суперсимметричной частицы должна остаться другая суперсимметричная частица. Следовательно, самая легкая из таких частиц должна быть стабильной. Эта самая легкая частица, которой не на что распадаться, известна физикам как легчайшая суперсимметричная частица, или LSP.

С экспериментальной точки зрения распад суперсимметричной частицы характерен тем, что даже после завершения всех процессов легчайшая из нейтральных суперсимметричных частиц должна остаться. Космологические ограничения говорят о том, что LSP не несет никаких зарядов и потому не будет взаимодействовать ни с одним из элементов детектора. Это означает, что в каждом случае возникновения и распада любой супер- симметричной частицы экспериментальные результаты покажут, что импульс и энергия не сохраняются, их часть куда‑то пропадает. Частица LSP уйдет незамеченной и унесет свои импульс и энергию туда, где их невозможно будет зарегистрировать; сигнатурой LSP будет дефицит энергии.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация