Кантор изложил эти выводы в статье 1877 года Ein Beitrag zur Mannigfaltigkeitslehre («К учению о многообразиях»). Для Кантора «многообразие» было синонимом «множества».
В июле он отправил текст в авторитетный берлинский «Журнал Крелле», который уже опубликовал его работу в 1874 году.
Но на сей раз ситуация была иной.
Тогда Кантор доказывал, что вещественные числа нельзя записать в виде последовательности, и заключал, что на любом отрезке числовой оси есть бесконечное количество трансцендентных чисел (бесконечность в контексте той статьи можно было интерпретировать как мощность). По совету Вейерштрасса Кантор сделал едва заметный намек на возможность сравнения двух бесконечных множеств и не стал развивать эту тему. К тому же он даже не поднял вопрос самого понятия мощности.
Сравнение бесконечных множеств стало лейтмотивом статьи 1877 года, причем трактовалось оно не просто как способ доказательства числового результата. В ней Кантор начал с определения того, что два множества эквивалентны, если между ними можно установить взаимно однозначное соответствие. Он также проиллюстрировал понятие мощности и вернулся к теореме 1874 года о трансцендентных числах, но в контексте сравнения бесконечных множеств. Затем ученый доказывал, что отрезок без одного конца эквивалентен отрезку с двумя концами и что отрезок эквивалентен квадрату. В конце Кантор впервые открыто изложил континуум-гипотезу.
Будущие поколения будут считать эту теорию [теорию множеств] болезнью, от которой мы излечились.
Французский математик Анри Пуанкаре, 1908 год
Содержание этой статьи было очень спорным для того времени, так что Кантор столкнулся с серьезной критикой. Он писал Дедекинду 10 ноября 1877 года:
«Публикация моей работы, с которой вы уже ознакомились, в журнале Борхардта [Карл Вильгельм Борхардт был издателем «Журнала Крелле» с 1856 по 1880 год] удивительным и необъяснимым образом все откладывается, хотя я отправил ее 11 июля, а вскоре получил заверение, что она будет напечатана в кратчайшие сроки.
Сегодня через моего старого друга Лампа, корректора журнала, я узнал, что Б. [Борхардт] опять отложил выход моей статьи, изменив таким образом намеченный порядок. Судьба публикации еще не решена. Он написал мне, что пытается ускорить ее одним ловким маневром. Я хочу думать, что ему это удастся, но надо также быть готовым и к тому, что он потерпит неудачу. В этом случае я намереваюсь полностью изъять мою работу из рук господина Б. [Борхардта] и напечатать ее в другом месте».
Видимо, «ловкий маневр» Лампа удался, поскольку «Журнал Крелле» опубликовал статью Кантора в 84-м выпуске 1878 года, на страницах 242-258. Однако Кантор был настолько обижен неуважительным поведением Борхардта, что больше не отправил в этот журнал ни одной статьи.
ПРОТИВНИК
Хотя Кантор в своем письме жаловался на Борхардта, главным противником публикации его статьи был Леопольд Кронекер, и Кантор прекрасно это знал.
Немецкий математик Кронекер, родившийся в 1823 году, был очень уважаем и обладал большим влиянием. Он занимался алгеброй, исчислением, арифметикой — особенно интересовали его точки их соприкосновения, — а также метеорологией, астрономией, химией и философией. В частности, он интересовался учениями Декарта, Лейбница, Канта, Спинозы и Гегеля.
В 1861 году по рекомендации Куммера и благодаря своим многочисленным наградам он был избран членом Берлинской академии наук, а в 1868 году — Парижской. Но несмотря на разносторонние математические интересы, научные методы Кронекера были весьма ограничены ввиду его философской позиции, которую можно описать знаменитой максимой:
Die Ganze Zahl schuf der liebe Gott, alles Übrige ist Menschenwerk («Бог создал натуральные числа, все остальное — дело рук человека»).
ВЕЩЕСТВЕННЫЕ ЧИСЛА БЕЗ НАЗВАНИЯ
Прокомментируем одно любопытное следствие из теории Кантора. Для этого условимся, что термин «вычисление» и любой эвфемизм называют число, если определяют его точно, не оставляя места недопониманию. Например, «количество дней недели» — обозначение числа 7, как и «сумма чисел 6 и 1». «Соотношение между длиной окружности и ее диаметром» — обозначение числа π. «Число, которое начинается с 0,1100010000000 00000000001000..., где первая единица стоит на первом месте после запятой, вторая единица — на месте 1 ∙ 2 = 2, третья единица — на месте 1 ∙ 2 ∙ 3 = 6 и так далее», — название трансцендентного числа Лиувилля. Таким образом, мы можем доказать, что множество всех возможных чисел эквивалентно множеству натуральных чисел, тогда как множество вещественных чисел ему не эквивалентно. Другими словами, вещественных чисел больше, чем названий для них. Отсюда следует, что существуют неуловимые вещественные числа, которые нельзя никак назвать и определить. Существует бесконечное количество таких вещественных чисел, хотя и, разумеется, невозможно привести ни одного их примера, так как любое число, которое мы сможем продемонстрировать, обязательно должно обладать названием (которое мы используем, чтобы показать его). Это случай доказательства простого существования, рассуждения, в котором доказывается наличие объектов (однако пример их невозможно найти).
По мнению Кронекера, основу математики составляют целые числа, которые «даны нам природой» и существуют независимо от человеческого разума. Все остальные математические объекты должны быть точно определены исходя из натуральных чисел, миновав конечное количество этапов. Основополагающее значение здесь имеет понятие конечности; Кронекер был твердо убежден, что актуальная бесконечность — это абсурд, и принимал (и то с оговорками) только идею потенциальной бесконечности.
Трансцендентное число Лиувилля для Кронекера не существовало. Он мог бы признать существование потенциально бесконечной последовательности, которая начинается с 0,1, продолжается с 0,11, потом с 0,110001 и так далее, но сказал бы, что выражение 0,1100010000000000000000001000..., в котором, как предполагается, содержится бесконечное количество цифр после запятой, не обозначает никакого существующего математического объекта.
Когда в 1882 году Линдеманн доказал, что π — трансцендентное число (см. предыдущую главу), Кронекер выразил восхищение элегантностью его рассуждений, но добавил, что на самом деле они ничего не доказывают, поскольку трансцендентных чисел не существует. Рациональное число 0,333..., по Кронекеру, существует, но только потому, что его можно определить через выражение, в котором используются натуральные числа: 1 /3; причем правильной он считал именно эту запись, а не 0,333..., в которой должно быть бесконечное количество цифр после запятой. Кронекер одним из первых подверг сомнению правильность доказательств простого существования математических объектов, не показывавших, как найти хотя бы один конкретный пример. В предыдущей главе мы убедились, что Кантор доказывал таким образом существование бесконечного множества трансцендентных чисел. Итак, теперь нам понятно, что Кронекер полностью отвергал исследования Кантора в области бесконечности не потому, что считал их ошибочными. Более того, он расценивал их как абсолютно лишенные смысла. По его мнению, говоря о бесконечных множествах или множествах разной степени бесконечности, Кантор рассуждал о несуществующих объектах. Поэтому Кронекер и использовал все возможные рычаги давления, чтобы помешать публикации работ Кантора. В частности, он пытался остановить публикацию статьи в «Журнале Крелле» в 1877 году.