Книга Неопределенный электрический объект. Ампер. Классическая электродинамика., страница 18. Автор книги Эугенио Мануэль Фернандес Агиляр

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Неопределенный электрический объект. Ампер. Классическая электродинамика.»

Cтраница 18
Неопределенный электрический объект. Ампер. Классическая электродинамика.

Эта таблица включает 48 элементов, известных во времена Ампера, остальные были вскоре открыты. На рисунке указан номер вида, присвоенный элементу Ампером, чтобы было видно, где он оказался прав и где ошибся.


ГЛАВА 4
Появление движущихся зарядов

После неудачного второго брака Ампер полностью сконцентрировался на работе. 1820 год знаменует решительный поворот в его исследованиях: ученый посвящает себя электромагнетизму. Почти 10 лет он проведет в своей лаборатории и войдет в историю благодаря успехам в этой области. Ампер первым представил гипотезу движущихся зарядов, являющихся источником магнитного поля, что создало предпосылки для возникновения электродинамики.

Электрические и магнитные явления наблюдались еще до нашей эры. Уже в античности заметили, что янтарь обладает электрическими свойствами, и от его греческого названия elektron происходит само слово «электричество». Кстати, магнетит, минерал с магнитными свойствами, содержащий окись железа, Fe3O4, также известен с древних времен, его название происходит от города Магнесия в Малой Азии. Грек Фалес Милетский (624-546 до н.э.) первым попытался установить связь между этими двумя явлениями, но безуспешно. Китайцы первыми смогли найти применение магнетиту: тексты II века свидетельствуют об умелом использовании ими компаса. Арабы, научившиеся у китайцев использовать этот камень, привезли его в Европу.

Первый научный трактат об электричестве называется Epistola de Magnete (1269), его автор — средневековый мыслитель Пьер де Марикур. В течение четырех последующих веков, вплоть до появления De Magnete Уильяма Гильберта (1544— 1603), никакого значительного прогресса в истории науки не произошло. Английский ученый вместе с другими мыслителями XVII и XVIII веков внес значительный вклад в понимание электричества. Открытие существования двух типов электричества — стеклянного (получаемого при трении стекла) и смоляного (получаемого при трении смолы) — принадлежит французскому физику Шарлю Франсуа Дюфе (1698-1739). Дюфе также доказал, что тела с одноименным зарядом отталкиваются друг от друга, а с разноименным — притягиваются. Именно тогда благодаря аббату Жану-Антуану Нолле (1700- 1770) появилась теория двух флюидов, сегодня устаревшая. Другие ученые, в частности американский физик Бенджамин Франклин (1706-1790), справедливо утверждали, что существует лишь один электрический флюид.


ВОЛЬТОВ СТОЛБ

Решающую роль в исследованиях, которые привели к появлению теории электродинамики, сыграло использование вольтова столба.

Между изобретением Алессандро Вольты 1800 года и началом работ Ампера по изучению электричества и магнетизма прошло больше двух десятилетий. За это время использование столба значительно усовершенствовалось. Вольта основывался на неожиданном открытии итальянского медика Луиджи Гальвани (1737-1798).

В 1780-х годах Гальвани установил, что мышцы препарированной лягушки сокращаются, если касаются двух соприкасающихся металлов (меди и цинка). Явление не было до конца понято, однако научное сообщество узнало об открытии. Вольта решил развить его: он взял медные и цинковые пластины, положил их одна на другую и перемежил каждую пару влажным сукном, пропитанным электролитом. Первая пластина была медной, последняя — цинковой. При соединении концов прибора проволокой появлялся электрический ток. В эпоху Вольты и Ампера его в честь Гальвани называли гальваническим, а сегодня говорят «электрический ток».

Неопределенный электрический объект. Ампер. Классическая электродинамика.

Схематичное изображение вольтова столба.


В 1785 году, когда Андре-Мари Амперу едва исполнилось десять лет, Кулон открыл закон электростатического взаимодействия, сыгравший значительную роль в развитии электромагнетизма. Почему этот закон так важен? С одной стороны, предложенные им способы измерения использовались в дальнейшем Ампером и другими учеными; с другой стороны, математическое выражение этого закона (сила взаимодействия двух зарядов обратно пропорциональна квадрату расстояния между ними) было очень схоже с выражением закона всемирного тяготения Ньютона (сила притяжения обратно пропорциональна квадрату расстояния между двумя массами). Ученые искали схожие отношения и в области магнетизма, но их усилия были безрезультатны.

В XVII веке произошел значительный прогресс в создании приборов, собирающих солнечную энергию, но лишь в 1800 году итальянский физик Алессандро Джузеппе Антонио Анастасио Вольта (1745-1827) изобрел вольтов столб. Наконец в распоряжении ученых появился постоянный источник электрического тока, и они могли сконцентрировать свои усилия на изучении нового явления. Первые догадки о взаимосвязи электрического тока и магнетизма появились лишь 20 лет спустя.


ОПЫТ ЭРСТЕДА

Датский физик Ханс Кристиан Эрстед (1777-1851) особенно интересовался явлениями электричества. Во время своих многочисленных поездок в Европу ему удалось собрать группу исследователей, которая занялась изучением новых явлений электрохимии. В 1813 году в своем произведении «Исследование идентичности электрических и химических сил» он писал, что «всегда пытался сопоставить электрические и магнитные силы». Эрстед в 1820 году опубликовал небольшую статью на латыни, в которой с помощью проведенного опыта показал взаимосвязь электрических и магнитных явлений. Считается, что эта статья, появившаяся 21 июля 1820 года, положила начало изучению электромагнетизма.

Опыт, совершивший революцию в мире физики и имевший огромное значение для человечества, можно описать одной фразой: физик показал, что при пропускании через проводник электрического тока магнитная стрелка компаса отклонялась (см. рисунок на следующей странице). Другими словами, он доказал, что электрический ток может воздействовать на магнит. Эрстед также понял, что это воздействие зависит от силы электрического тока, свойств проводника и расстояния между проводником и магнитом. Магнит не может находиться в любом положении — электрический ток воздействует на него только в определенных угловых положениях.

В статье Эрстеда не использовались математические методы, в ней не было никаких графиков, однако новость о важном открытии распространилась мгновенно. Франсуа Араго присутствовал при повторении опыта швейцарским физиком Шарлем Гаспаром де ла Ривом (1770-1834) в Женеве. Араго был так впечатлен, что поспешил представить результаты Эрстеда в Академии наук 4 сентября 1820 года. Для многих речь шла о новом и неожиданном явлении, так что академики испытывали некоторый скептицизм, поэтому Араго сам воспроизвел опыт через неделю, 11 сентября 1820 года, во время второго заседания академии. На нем присутствовал Ампер, и увиденное произвело на него такое впечатление, что ученый посвятил свои исследования изучению этого явления. Вскоре он пишет своему сыну:

Вход
Поиск по сайту
Ищем:
Календарь
Навигация