За время пребывания в Геттингене Дирак опубликовал две статьи, в которых развил основы квантовой теории излучения. Именно он считается основателем квантовой электродинамики. В главе 4 будет подробно рассказано о содержании этих двух статей. Дирак стал первым физиком, развившим квантовую теорию взаимодействия излучения и вещества. Данная теория стала для него большой наградой и еще большим разочарованием.
ВОЗВРАЩЕНИЕ В КЕМБРИДЖ
Пребывание Дирака в Геттингене закончилось в июне 1927 года. По пути в Кембридж он остановился в Лейденском университете (Нидерланды) по приглашению Пауля Эренфеста (1880-1933), с которым обсудил последние работы в области теории излучения. Эренфест неотступно стремился понять все существующие аспекты новой квантовой теории. Он был известен своей манерой превращать семинары в настоящие допросы выступающих. Его стремление все знать было настолько сильным, что часто повергало ученого в глубокую депрессию, связанную с невозможностью уследить за развитием всех открытий. Эренфест восхищался работами Дирака и считал их очень оригинальными, но трудными для понимания:
«Мы часами изучали несколько страниц его работы, в ней есть места столь же темные, как безлунная ночь».
Хендрик А. Лоренц (1853-1928), профессор Лейденского университета и старейшина голландских физиков, тоже восхищался работами Дирака. Он предложил ему должность в Лейденском университете на два года, однако Дирак вежливо отказался, поскольку получил новую стипендию в Кембридже. В июле 1927 года ученый вернулся в университет Кембриджа после десяти месяцев, проведенных на континенте.
За два года он стал одним из самых уважаемых физиков в международном сообществе. Его работы получили мировое признание. Они считались очень оригинальными и глубокими, хотя и совершенно непонятными. Однако, если физики и восхищались его работами, несомненно, именно из-за трудностей понимания последние оказывали меньшее влияние, нежели работы Гейзенберга, Борна и Йордана или Шрёдингера. Ситуация начала меняться в конце 1927 года, вместе с появлением двух первых статей Дирака о взаимодействии излучения и вещества. Но самая потрясающая работа была еще впереди. В начале 1928 года Дирак ошеломил своих коллег: он объединил теорию относительности и квантовую физику в одном уравнении. Оно знаменовало необыкновенные открытия и подняло проблемы, о которых прежде невозможно было и подозревать.
ГЛАВА З
Релятивистская теория электрона. Антивещество
Релятивистская теория электрона, возможно, стала самым значительным открытием Дирака. Ему удалось объединить в одном уравнении главные аспекты двух великих теорий XX века — теории относительности и квантовой физики. Уравнение Дирака естественным образом включало спин электрона и его магнитный момент.
Благодаря этому уравнению было открыто существование отрицательных значений энергии. Так впервые появилось понятие антивещества.
В октябре 1927 года в Брюсселе состоялся очередной Сольвеевский конгресс, на который был приглашен и Дирак — еще одно подтверждение признания его работ. Данный конгресс знаменит жарким спором, разгоревшимся между Бором и Эйнштейном, об основах квантовой механики и принципе неопределенности Гейзенберга. Дирак присутствовал на этих заседаниях. Там он лично познакомился с Эйнштейном, но занял достаточно пассивную позицию. Вспоминая, ученый написал:
«Я слушал аргументы, но не принимал участия в дискуссии; ее предмет мало интересовал меня. [...] Я считаю, что главная работа физика-математика заключается в получении верных уравнений; интерпретация же этих уравнений имеет минимальное значение».
Во время конгресса Дирак также сообщил Бору о своей работе над релятивистским уравнением электрона. Бор заметил, что эта проблема уже была решена Клейном. Его ответ очень удивил Дирака: он не мог понять, как теория Клейна, противоречившая основным законам квантовой механики, могла устраивать значительное число физиков. Через два месяца Дирак поразит научный мир новой теорией, и Бор осознает, что его комментарий был огромной ошибкой.
ПЕРВЫЕ ПОПЫТКИ: УРАВНЕНИЕ КЛЕЙНА — ГОРДОНА
Дирак всегда был очарован теорией относительности и мечтал однажды применить ее к квантовому миру. Одну попытку он предпринял после публикации первой работы Гейзенберга, но неудачно. Несколько месяцев спустя, изучая эффект Комптона и волновую механику, он использовал релятивистскую версию уравнения Шрёдингера, которая известна под названием «уравнение Клейна — Гордона» (записываемого как уравнение КГ), по имени физиков Оскара Клейна (1894-1977) и Вальтера Гордона (1893-1939). В свое время Дирак не придавал особого значения данному уравнению, считая его просто «полезным математическим инструментом для расчета матричных элементов, которые таким образом могли быть интерпретированы в рамках матричной квантовой теории». Разработав свою теорию преобразований, Дирак заключил, что уравнение КГ было абсолютно непоследовательным, поскольку оно не соответствовало основным свойствам квантовой механики.
В чем же заключался смысл уравнения Клейна — Гордона, и почему оно было неприемлемо для Дирака? Чтобы понять это, нам надо вернуться в начало 1926 года, когда Шрёдингер занимался волновой механикой. Как и Дирак, австрийский физик осознавал важность включения релятивистской теории в свою работу. На самом деле полученное им первое волновое квантовое уравнение учитывало релятивистские эффекты и не противоречило классическому релятивистскому выражению для энергии. Однако Шрёдингер решил не публиковать это уравнение, поскольку заметил, что оно не ведет к постоянной тонкой структуры.
Эта постоянная, полученная Зоммерфельдом в 1915 году с помощью атомной теории Бора, прекрасно выражала энергетические уровни атома водорода. Таким образом, она представляла собой главный «тест» для любой квантовой теории. В марте 1926 года Шрёдингер опубликовал свое новое уравнение — то самое, которое сегодня носит его имя. Оно не только учитывало постоянную Зоммерфельда, но и полностью изменило облик квантовой механики; со временем оно стало, наряду с принципом эквивалентности массы и энергии Эйнштейна, самым знаменитым физическим уравнением. Однако уравнение Шрёдингера не включает в себя теорию относительности — оно согласовывается с классическими формулировками механики Ньютона.
МАТЕМАТИЧЕСКАЯ ФОРМУЛИРОВКА УРАВНЕНИЯ КЛЕЙНА — ГОРДОНА
В релятивистской механике масса зависит от инерциальной системы отсчета. Обозначим собственную массу частицы, то есть массу частицы в ее собственной инерциальной системе отсчета, как m. Представим, что эта частица перемещается со скоростью ṽ. Для простоты допустим, что речь идет о свободной частице — не взаимодействующей с другими телами. В этой ситуации общая энергия и кинетический момент выражаются уравнениями
в которые вводится фактор Лоренца γ, описанный в главе 1. Соединяя выражения энергии и момента, получаем следующее уравнение: