Илл. 2.10
На илл. 2.10 видно, что нижний пик синего цвета приходится на уровень светлоты 3L. Вариации цвета в более темном диапазоне человеческий глаз практически не различает, воспринимая их как черный. Верхний пик желтого цвета приходится на уровень светлоты 95L. Более светлые цвета мы также практически не различаем, воспринимая их как белый. Усредненно по всем цветам диапазон максимального их разнообразия по светлоте и цветовому тону составляет примерно 10–70L.
В этом диапазоне большая часть цветов:
1) может достигать своей предельной воспринимаемой насыщенности;
2) максимально разнообразна по светлоте (хорошо различимы светлотные градации цвета);
3) выглядит максимально характерно (цвета хорошо различимы между собой).
Однако следует помнить, что каждый конкретный цвет достигает своего предельного насыщения и максимальной вариативности в разных диапазонах светлот.
Условное разделение светлотного диапазона на разные области помогает лучше понять природу цвета с точки зрения его восприятия человеком, а на практике – получать нужную степень насыщенности и вариативности цвета, в зависимости от цветовой гаммы конкретной фотографии и задач, которые ставит перед собой фотограф.
Резюмируем наши наблюдения. Итак, где живет цвет?
В самых темных областях цвет практически не проявляется. Отсюда он изгнан, остались лишь редкие его представители – небольшие поселения синего и фиолетового. Диапазон полутемных и средних светлот – настоящий мегаполис, в котором можно встретить самые разнообразные цветовые палитры, и в котором цвет достигает своего предельного насыщения. Светлый диапазон – верхние этажи и пентхаузы – обитель изысканных нежных оттенков, над которым может возвышаться лишь небоскреб насыщенного желтого цвета.
Глава 3. Насыщенный цвет
Мы уже знаем, что большая часть цветов может достигать своего максимального насыщения в диапазоне светлот примерно 10–70L. Посмотрим, как этот диапазон выглядит в интерфейсе Curves, основного инструмента цветокоррекции. Рассматривать его работу мы будем в RGB, т. к. это базовая модель представления цвета в цифровой фотографии. Именно к ней сводится интерпретация исходных Raw-данных матрицы, в ней же осуществляется основная обработка в программах по работе с цифровой фотографией.
Илл. 3.1
На илл. 3.1 серым цветом обозначены уровни светлот от 10L до 70L. Именно так выглядит интересующий нас диапазон светлот в наиболее распространенных цветовых пространствах sRGB и Adobe RGB
[2].
Логично было бы предположить, что для того, чтобы цвета на фотографии выглядели максимально насыщенно, в рамках модели RGB необходимо:
1. Располагать диапазон светлот значимых областей фотографии примерно в обозначенном диапазоне, то есть делать фотографию чуть темной.
2. Повышать контраст внутри этого диапазона.
В цветовой модели RGB насыщенность определяется разницей между самым светлым и самым темным каналами, поэтому повышение контраста всегда влечет за собой насыщение цветов. Использование рассматриваемого диапазона светлот без повышения контраста обычно недостаточно для проявления насыщенных свойств цвета, т. к. в этом диапазоне цвет может быть и не насыщен (что чаще всего бывает, например, в исходном Raw-файле).
Рассмотрим пример. На илл. 3.2 приведено изображение, полностью использующее доступный диапазон светлот: гистограмма заполнена от левого до правого края, в светах и тенях нет принципиальных отсечек.
Илл. 3.2
Получить похожее изображение можно, сконвертировав Raw в Adobe Camera Raw (Lightroom) с параметрами «по нулям»
[3], без каких-либо светлотно-контрастных установок, но с приведением баланса белого. В итоге мы получим изображение, напоминающее то, которое получается при регистрации сцены фотокамерой, т. е. достаточно малоконтрастную и слабонасыщенную картинку, нуждающуюся в дальнейшей обработке. Фактически это сырье – изображение, предполагающее последующую интерпретацию, в зависимости от задач, которые ставит перед собой фотограф.
Попробуем сделать этот снимок насыщеннее за счет повышения контраста и смещения общего диапазона светлот в сторону теней. Для этого нам потребуется кривая примерно такой формы, которая показана на илл. 3.3.
Илл. 3.3
Обратите внимание на то, что в данном случае речь идет о композитной кривой в цветовой модели RGB. С некоторыми оговорками для этих целей можно использовать композитную кривую в модели CMYK. А вот использовать кривую в канале L (Lightness) цветовой модели Lab затруднительно, т. к. в пространстве Lab цвет отделен от светлоты, что несколько не соответствует восприятию человека. При манипуляциях с каналом L насыщенность цвета остается неизменной, в реальности же восприятие цветов (в том числе их насыщенности), как мы уже знаем, связано с уровнем их светлоты.
При этом, работая с композитной кривой RGB или CMYK, мы должны учитывать возможные цветные сюрпризы. Ведь используя мастер-кривую, мы манипулируем всеми каналами одновременно, что может привести к нежелательным или, наоборот, желательным цветовым смещениям. Если по каким-либо причинам появится необходимость избежать таких смещений, можно специально перейти в простанство Lab или работать с композитной RGB-кривой в режиме наложения Luminocity.