Мы упоминали это движение в главе 4, когда рассматривали процесс формирования газовых гигантов. Прочесывание протопланетного диска обеспечивает быстрый рост за счет слипания с планетезималями. Но, к сожалению, для планеты все может закончиться весьма печально.
Расчеты скорости миграции планеты к центру системы приводят к неутешительному выводу: уже через 100 000 лет зародыш газового гиганта, начавший миграцию оттуда, где сейчас находится Юпитер, ждет гибель при столкновении со звездой. Это намного меньше, чем время, которое требуется, чтобы диск рассеялся, и планета перестала замедляться из-за сопротивления газа. Как только планета достигает размеров Марса, ее гравитации уже достаточно для начала миграции, что ставит под сомнение саму возможность формирования планет.
Это уже второй раз, когда из-за сопротивления газа будущие новые миры на конвейере фабрики планет почти брошены в пекло звезды. В первый раз жертвами были некрупные планетезимали, имеющие дело с сопротивлением движущегося с меньшей скоростью газа. Когда планетезимали вырастают в зародыши планет, это сопротивление перестает влиять на их более массивные тела. Но по мере дальнейшего увеличения массы и превращения небесного тела в маленькую планету, его гравитация начинает притягивать газ, и вновь возникают пугающе мощные силы торможения.
Поначалу идея миграции планет была отвергнута, поскольку противоречила очевидному факту существования нашей Солнечной системы. Но с открытием горячих юпитеров у нее появился второй шанс. Однако могла ли планета, начав мигрировать, остановиться и не быть поглощенной звездой?
Если сопротивление газа приводит к изменению орбиты планеты, то притяжение планеты делает то же самое с газом. Газ, движущийся с меньшей скоростью, получает ускорение и выталкивается вовне, тогда как газ, движущийся с большой скоростью, замедляется и направляется по спирали вниз. В итоге газ покидает пространство вокруг планеты. При небольшом размере планеты место перемещенного материала занимает свежий газ, однако в какой-то момент гравитация планеты становится такой сильной, что она выталкивает весь газ, создавая разрыв в протопланетном диске.
Как было показано в главе 3, этот процесс довершает формирование газового гиганта: молодая планета стремительно растет, мигрируя во все новые скопления планетезималей. Когда масса достигает значения, достаточного для возникновения разрыва в диске под действием гравитации, планета оказывается в среде с малой плотностью, и рост атмосферы прекращается.
С вытеснением газа из пространства вокруг планет создаваемое им сопротивление может полностью исчезнуть. Однако дисковый газ также не остается на месте, смещаясь к центру в процессе аккреции на звезду. В результате разрыв заполняется извне новой порцией газа, который продолжает тянуть планету назад, пока не оказывается вновь вытолкнутым наружу. Таким образом, на планету по-прежнему воздействует сила, которая тянет ее к центру, но уже намного слабее. При достаточном замедлении планета может просуществовать до того момента, когда газовый диск рассеется и перестанет воздействовать на нее.
Движение планеты до образования разрыва называют миграцией первого рода, которая переходит в миграцию второго рода, после того как планета пробивает брешь в диске. Однако из-за большой скорости миграции первого рода планеты рискуют не дожить до перехода в спокойный режим движения при миграции второго рода.
Вопрос о механизме остановки миграции первого рода остается открытым. Согласно одной гипотезе, движущаяся по спирали вниз планета превращается в бульдозер, который аккумулирует газ внутри своей орбиты. В результате увеличивается объем быстрого внутреннего газа, который тянет планету вперед, помогая ей преодолеть сопротивление газа, движущегося с меньшей скоростью. Внезапные толчки и изменения в газе, такие, например, как на снеговой линии, также могут влиять на величину силы, с которой газ тянет планету в разных направлениях, выступая в роли своего рода планетных «ловушек» и останавливая миграцию. То есть все, что может повлиять на поток газа в области диска, может также повлиять на скорость миграции первого рода.
Если горячие юпитеры оказались там, где они находятся сейчас, в результате миграции, то, значит, потенциально она может быть фактором процесса формировании планет. Правда, в этом случае этот процесс превращается в рискованную игру с непонятным исходом. Учитывая близость наблюдаемых нами горячих юпитеров к звезде и допуская, что их движение по спирали вниз прекратилось в результате рассеивания газового диска, мы должны признать, что этим планетам просто очень повезло. Или они остановились на внутренней границе диска, пересекая которую любой материал улетучивается или срастается со звездой в результате аккреции.
Гипотеза миграции объясняет формирование горячих юпитеров, однако противоречит тому, что мы знаем о Солнечной системе.
Проблемный Марс
Если нынешнее положение горячих юпитеров объясняется их миграцией, перед нами встает очевидный вопрос: почему та же судьба не постигла планеты Солнечной системы?
Возможность перемещения планет земной группы в результате миграции вызывает споры. Формирование Земли и ее соседей проходило медленнее, а значит, их масса могла оставаться ниже значения, необходимого для начала миграции, вплоть до момента испарения газа. Согласно еще одному сценарию, наши каменистые миры могла удерживать на их местах одна из упомянутых выше планетных ловушек.
С газовыми гигантами дело обстоит сложнее. Аккумулировать такую атмосферу, как у них, можно только при высоком темпе формирования планеты. Поэтому в их случае могли происходить миграции обоих типов. Даже если бы миграция первого рода замедлилась или остановилась, из-за колоссальной массы мог образоваться газовый разрыв, обеспечивающий начало миграции второго рода, то есть планета продолжила бы смещаться к Солнцу.
Также есть основания полагать, что орбитальное движение все-таки принимало участие в процессе формирования наших планет, по крайней мере в небольшом объеме. Например, газовые гиганты могут быстрее набрать массу за счет миграции в диске. Там, где находятся сейчас Уран, Нептун и пояс Койпера, могло просто не быть достаточного количества материала для образования этих объектов — они могли переместиться туда из более насыщенной веществом области. Но если миграция действительно происходила, тогда что заставило Юпитер остановиться, что не дало ему пронестись по внутренней части Солнечной системы, разрушая все на своем пути, включая Землю?
Не исключено, что события развивались именно по этому сценарию. Ключом к пониманию устрашающего прошлого является Марс. Эту планету назвали в честь древнеримского бога войны, но на самом деле она маленькая и субтильная. Она настолько крохотная, что ее размер стал камнем преткновения для теорий образования планет.
Чем дальше мы удаляемся от Солнца в пределах внутренней области Солнечной системы, переходя от Меркурия к Венере, Земле и Марсу, тем слабее притяжение солнечной гравитации. Благодаря этому область влияния собственной гравитации планеты (ее сфера Хилла) расширяется, что позволяет ей в процессе формирования захватывать каменистые небесные тела с более обширного участка. Увеличение зоны питания должно неизменно приводить к увеличению размера планеты. Поэтому мы должны наблюдать увеличение масс планет, пока не доберемся до Юпитера, чудовищная гравитация которого начинает мешать процессу формирования планет, способствуя образованию пояса астероидов.