Книга Фабрика планет. Экзопланеты и поиски второй Земли, страница 32. Автор книги Элизабет Таскер

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Фабрика планет. Экзопланеты и поиски второй Земли»

Cтраница 32

Картина безрадостная, но надежда, пусть и маленькая, все-таки есть. Если мигрирующая планета оставит после себя достаточно пыли и твердых тел, формирование землеподобных миров может начаться снова. Количество оставшегося вещества на момент перезапуска процесса будет зависеть от скорости перемещения мигрирующей планеты по системе. Скорость миграции первого рода, учитывая зависимость от множества факторов, трудно поддается оценке, но очевидно, что планета, которая задержится в зоне формирования планет земной группы, рассеет больше вещества, чем мигрирующий мир, который на всех парах несется к звезде.

При взаимодействии с газовым диском рассеянные каменистые планетезимали также могут вернуться на орбиты, близкие к круговым. При эллиптической траектории планетезимали приходится двигаться против кругового потока газа диска. Следствием разницы скоростей газа и твердого тела становится мощнейшее сопротивление, которое заставляет каменистые тела вернуться на круговые орбиты и обеспечивает продолжение процесса формирования планет.

Для выброшенной планеты тоже не все потеряно: она вполне еще может вернуться на орбиту, более близкую к круговой. При вращении по изогнутой эллиптической орбите на планету действует сила притяжения звезды, которая меняется в зависимости от расстояния. Как и в случае с горячими юпитерами, заброшенными во внутреннюю область в результате срабатывания механизма Козаи — Лидова, под влиянием периодических колебаний силы притяжения орбита планеты снова может принять круглую форму. Газовый диск также не дает орбите вытянуться, помогая планете удерживаться на круговой траектории.

У идеи о восстановлении популяции после прохождения мигрирующей планеты даже есть ряд преимуществ. К тому моменту, когда газ рассеется, второе поколение планет может не дорасти до размера Марса. То есть необходимость в планетных ловушках, которые бы остановили миграцию к звезде, отпадает. При массовом рассеивании каменистых тел в результате миграции первого поколения планет во внутреннюю область системы может попасть лед, тем самым обеспечивая возможность формирования богатых водой миров. В результате за горячими планетами, находящимися рядом со звездой, будут существовать миры с более благоприятными для жизни условиями (хотя и трудным прошлым).

Загадка без разгадки

Проблема формирования популяции горячих суперземель продолжает волновать умы исследователей. Появились ли они в результате миграции из-за линии льдов или же сформировались из планетезималей и глыб, попавших во внутреннюю область системы благодаря горячим юпитерам или сопротивлению газа?

Чтобы распутать этот клубок гипотез, можно заняться поисками слабо проявляющих себя далеких от звезды экзопланет. Вероятность активной миграции в системе с планетами как на близких к звезде орбитах, так и на значительном удалении меньше, чем в системе, где нет других планет, кроме тех, которые кружат рядом со звездой. К тому же сформировавшаяся вдалеке от звезды планета должна быть покрыта толстым слоем льда. А значит, ее атмосфера должна быть наполнена водяными парами, которые могут быть доступны для наблюдения с помощью следующего поколения телескопов. Но мы никогда не разгадаем загадку самого массового класса планет, пока не найдем выход из лабиринта планет и планетезималей.

Глава 7. Вода, алмазы, лава — неведомые рецепты планетообразования

После известия об открытии 51 Пегаса b астрономам понадобилось около двух лет, чтобы научиться уверенно вычленять в данных о движении звезды колебания, указывающие на присутствие планеты. В результате им удалось обнаружить еще шесть экзопланет. Все они, как и 51 Пегаса b, были горячими юпитерами с огромной массой и близкими к звезде орбитами. Поэтому их и было легче всего найти.

О последних трех стало известно в 1997 году. Среди них была HR 3522b — планета чуть меньше Юпитера с периодом обращения 14 суток. Авторы журнальной публикации о находке использовали обозначение, которое она получила при включении в Йельский каталог ярких звезд (HR). Впоследствии за ней закрепилось название «55 Рака b», указывающее на то, что это была первая планета, найденная рядом с 55-й звездой в созвездии Рак. Новая планета была примечательна уже тем, что была одной из первых известных нам планет за пределами Солнечной системы. Но было еще кое-что, выделявшее из общего ряда. Так случилось, что 55 Рака b стала первой планетой, обнаруженной в системе, которая выходила за рамки даже самых смелых наших фантазий об инопланетных мирах.

В течение 10 лет с открытия 55 Рака b на орбитах вокруг той же самой звезды было обнаружено еще четыре планеты. Таким образом, 55 Рака стала первой известной нам звездой с пятью планетами и одной из трех звезд, рядом с которыми были найдены первые суперземли с такой же массой, как у Нептуна. Масса 55 Рака e равна приблизительно 8 массам Земли (48% массы Нептуна). У нее исключительно короткий период обращения — всего лишь 18 часов, а расстояние от нее до звезды составляет 5% расстояния от Меркурия до Солнца.

В ходе наблюдений за 55 Рака выяснилось, что она является частью двойной системы. Другая звезда этой системы — менее массивный красный карлик, находящийся на расстоянии более 1000 а.е. Несмотря на маленький размер и удаленность, которые не позволяют ему влиять на планеты, формирующиеся вокруг более крупной сестры, красный карлик, судя по всему, является источником постоянного притяжения, ставя всю планетную систему с ног на голову.

Производимый им эффект аналогичен эффекту Козаи — Лидова, с которым мы познакомились в главе 5, когда рассматривали его роль в перемещении горячих юпитеров к звездам за счет взаимодействия со звездой-компаньоном. В системе 55 Рака гравитационные притяжения соседних миров удерживают орбиты планет вместе таким образом, что вся система переворачивается одновременно, как при выступлении команды по синхронному плаванию. Если бы мы могли взглянуть на небо с поверхности этих планет, из-за совершаемого всей планетной системой кульбита нам бы показалось, что созвездия медленно движутся. Правда, чтобы заметить это, нам пришлось бы задержаться там надолго: для полного переворота требуется около 30 млн лет.

Но самое необычное в этой системе — свойства присутствующей в ней суперземли 55 Рака e. Как и остальные планеты, 55 Рака e была обнаружена методом измерения колебаний лучевой скорости звезды. В 2011 г. также удалось зафиксировать прохождение суперземли по диску звезды с помощью космического телескопа NASA «Спитцер». И вот еще одно «впервые» для этой планетной системы: звезду 55 Рака можно наблюдать невооруженным глазом; а значит, прохождение ближайшей к ней планеты стало первым зафиксированным случаем прохождения по диску звезды, которую можно увидеть без телескопа. Проведенные измерения радиуса и угла наклона орбиты позволили определить массу планеты. Выяснилось, что эта суперземля на 20% больше Земли при радиусе, равном 2,2 радиуса нашей планеты. В очередной раз исследователи получили результат, который казался совершенно абсурдным.

Вычислить плотность 55 Рака e при наличии массы и радиуса не составило труда — она равна 4 г/см3. Учитывая радиус, следовало бы предположить, что планета является мини-нептуном [11]. Но полученное значение плотности было слишком большим для газового мира с обширной водородно-гелиевой атмосферой. Плотность мини-нептуна с массой, равной 8 массам Земли, не должна превышать 1,3 г/см3. С другой стороны, при такой массе планета с твердой внутренней частью, как у Земли, также не может иметь плотность 4 г/см3. Хотя плотность Земли в среднем приближается к 5,5 г/см3, на планете с массой, которая в 8 раз больше, горные породы должны сжаться до значения свыше 8,5 г/см3. Таким образом, 55 Рака e была слишком мала для газового мира и слишком велика для каменистого. Чем же она была на самом деле?

Вход
Поиск по сайту
Ищем:
Календарь
Навигация